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Why should you care about Mmw/?

And why is “~ 10" Mg, not good enough?

* Virial mass estimates range from ~(0.5-3)x10'? Mg, -- result in very
different expectations for galaxy formation models

* Example: baryonic content of the MW

» it Myir ~ /el |, most or all of MW's baryons are accounted for by observations

» if Myir ~ 2e12, most of the MW's baryons are “missing”

* Example: satellite galaxy abundance

» satellite galaxy abundance scales ~linearly with Mir, so interpretation of
potential small scale issues depends on Mmw

Note: virial mass defined with respect to 95 perit throughout



Tracers of the MW's potential

Is Leo | bound? See: Zaritsky et al. 1989, Fich & Tremaine 1991, Kochanek 1996, Sales et al. 2007, Sohn et al. 2007, Mateo et al. 2008, Watkins et al. 2010
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Tracers of the MW's potential

* stars (BHB, RR Lyrae): large numbers out to ~50 kpc, density falls off
quickly at larger radii (xue et al. 2008, Gnedin et al. 2010, Deason et al. 2012)

* gas: forget about it

* satellite galaxies: small number; but can be studied in detall

» Magellanic Clouds: D=50-60 kpc, likely on first infall. Models reproducing the
Clouds’ orbit and production of the Magellanic Stream can constrain MW mass

» Leo [ distant (D=260 kpc) and fast-moving (V- ~ | /5 km/s) classical dSph satellite
(stellar mass ~ 5x10°® Mgy, half-light radius of ~400 pc). Plays the largest role of
all satellites in constraining the MW mass, but is it bound?

Is Leo | bound? See: Zaritsky et al. 1989, Fich & Tremaine 1991, Kochanek 1996, Sales et al. 2007, Sohn et al. 2007, Mateo et al. 2008, Watkins et al. 2010



Radial velocrties of the classical MVV satellites
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In terms of 3D velocity
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Measuring Leo |'s proper motion

* Proper motion measurements usually use background quasars;
Anderson, Mahmud van der Marel, & Sohn developed a technique to use
background galaxies instead (recently used for M3 | proper motion).

* requires accurate astrometry for both stars in Leo |, background galaxies
* measurement using HST/ACS with 5 yea@baseline:

(,uW, ,LLN) — (140 _

* In“more useful” units:

O + 29.3) pasyr—

Sohn et al. (2012, in preparation)
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What does this mean for the MW virial mass?



Phase space In terms of total velocity
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Unbound subhalos: very rare




Where Is Leo | in this phase space!
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Deriving a constraint on Mmw
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Deriving a constraint on Mmw
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P(Mvir|g)

The Virial Mass of the Milky Way

1.6 B 1 1 1 1 1 1 |
14k conservative estimate: |
Leo | is the least bound

2l classical satellite, CDM prior

1.0} -
between 0 and 5

0.8 | addrtional classical -
satellites at least as

0.6 | energetic as Leo |, .
CDM prior

0.4

0.2

0.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
12
Mvir [10 M @]

MBK et al. 2012 (in preparation)

Best constraint for MVW:

Mir > 0.95 x 10" M

at 95% confidence; nearly
independent of assumptions
about number of fast-
moving satellites



Cosmology dependence!
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Cosmology Independence
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Phase space Is stratified based on infall time
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Phase space Is stratified based on infall time
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Phase space Is stratified based on infall time
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(Vtot/ Vyie) % (0, /[0, ])
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One implication of a 1.5x10"'* Milky Way

* baryonic allotment of the MW is ~2.5x 10" Mqun. Observed baryonic
content is ~7x10'0 Mgyn. Missing ~1.8x10'" Msn of baryons.

» Maybe these baryons never made it into the halo!?
» Maybe these baryons were ejected from the halo?

» Maybe these baryons be hidden in an extended hot gas corona?

* These 3 possibilities have very different implications for our
understanding of galaxy formation



MWV hot gas constraints

Fang, Bullock, MBK 2012: constraints on hot (~10° K) gas in the MW halo
depend strongly on adopted gas profile.

* Hot gas disk (from MW ISM): negligible contribution to MWV baryon
budget

* NFW distribution for gas (c=3 or |2): hot halo can only hold a small
fraction of missing baryons (cf. Anderson & Bregman 2010)

* extended, cored distribution: most or all of the missing baryons could
be within the virial radius, even for Myi- ~ 1.5x10"?

» profile motivated by Maller & Bullock 2004: adiabatic gas in hydrostatic
equilibrium with NFW dark matter halo
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Conclusions

* The virial mass of the Milky Way is important. Reducing the uncertainty
in Mvirmw Is crucial for making progress in several areas of galaxy
formation.

* Leo | plays an outsized role in driving satellite-based estimates of
Mmw, but Interpreting its motion has been contentious

* Sohn et al. 2012 have measured Leo I's proper motion: Leo | has
significant tangential velocity (~ 100 km/s).

o LCDM simulations: relaxed hosts have virtually no unbound subhalos

« comparing to LCDM simulations, find Myirmw=(1.5-2.1)x10"? Mg, and
Muirmw > 1012 Mgun at 95% confidence

* strong correlation between orbital energy and infall time; in general,
not present only with radial velocrties, need proper motions
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Galaxy-galaxy lensing + Tully-Fisher
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