Weighing the Milky Way

Does this dark matter halo make me look fat?

Mike Boylan-Kolchin Center for Galaxy Evolution / UC Irvine

Santa Cruz galaxy formation workshop, August 2012

In Collaboration With:

James Bullock (UCI)

S.Tony Sohn, Roeland van der Marel (STScl)

Gurtina Besla (Columbia)

Steve Majewski (UVA)

AND WITH THANKS TO:

The Aquarius, Via Lactea, and GHALO collaborations

Why should you care about M_{MW} ?

And why is ''~10¹² M_{sun}'' not good enough?

Note: virial mass defined with respect to 95 $ho_{
m crit}$ throughout

Why should you care about M_{MW} ?

And why is ''~10¹² M_{sun}'' not good enough?

 Virial mass estimates range from ~(0.5-3)×10¹² M_{sun} -- <u>result in very</u> <u>different expectations for galaxy formation models</u>

Note: virial mass defined with respect to 95 $ho_{
m crit}$ throughout

Why should you care about M_{MW} ?

And why is ''~10¹² M_{sun}'' not good enough?

- Virial mass estimates range from ~(0.5-3)×10¹² M_{sun} -- result in very different expectations for galaxy formation models
- Example: baryonic content of the MW
 - if $M_{vir} \sim 7eII$, most or all of MW's baryons are accounted for by observations
 - \blacktriangleright if $M_{vir} \sim 2e12$, most of the MW's baryons are ''missing''
- Example: satellite galaxy abundance
 - satellite galaxy abundance scales ~linearly with M_{vir}, so interpretation of potential small scale issues depends on M_{MW}

Note: virial mass defined with respect to 95 $ho_{
m crit}$ throughout

Is Leo I bound? See: Zaritsky et al. 1989, Fich & Tremaine 1991, Kochanek 1996, Sales et al. 2007, Sohn et al. 2007, Mateo et al. 2008, Watkins et al. 2010

 stars (BHB, RR Lyrae): large numbers out to ~50 kpc, density falls off quickly at larger radii (Xue et al. 2008, Gnedin et al. 2010, Deason et al. 2012)

- stars (BHB, RR Lyrae): large numbers out to ~50 kpc, density falls off quickly at larger radii (Xue et al. 2008, Gnedin et al. 2010, Deason et al. 2012)
- gas: forget about it

- stars (BHB, RR Lyrae): large numbers out to ~50 kpc, density falls off quickly at larger radii (Xue et al. 2008, Gnedin et al. 2010, Deason et al. 2012)
- gas: forget about it
- satellite galaxies: small number, but can be studied in detail
 - Magellanic Clouds: D=50-60 kpc, likely on first infall. Models reproducing the Clouds' orbit and production of the Magellanic Stream can constrain MW mass
 - Leo I: distant (D=260 kpc) and fast-moving (Vr ~ 175 km/s) classical dSph satellite (stellar mass ~ 5×10⁶ M_{sun}, half-light radius of ~400 pc). Plays the largest role of all satellites in constraining the MW mass, but is it bound?

Radial velocities of the classical MW satellites

Radial velocities of the classical MW satellites

Radial velocities of the classical MW satellites

Radial velocities of the MW satellites

V_{escape} for $M_{\rm vir,MW} = 10^{12} M_{\odot}$ $M_{\rm vir,MW} = 7 \times 10^{11} M_{\odot}$

In terms of <u>3D</u> velocity

In terms of <u>3D</u> velocity

In terms of <u>3D</u> velocity

Measuring Leo I's proper motion

- Proper motion measurements usually use background quasars; Anderson, Mahmud van der Marel, & Sohn developed a technique to use background galaxies instead (recently used for M31 proper motion).
- requires accurate astrometry for both stars in Leo I, background galaxies
- measurement using HST/ACS with 5 yearbaseline: $(\mu_W, \mu_N) = (114.0 \pm 29.5 - 6 \pm 29.3) \,\mu \text{as yr}^{-1}$ • In "more useful" units: $V_{\text{rad}} = 169 \,\mu \text{as s}^{-1}$ $V_{\text{tan}} = 44.4 \,\text{km s}^{-1}$ $V_{\text{tan}} = 44.4 \,\text{km s}^{-1}$ $V_{\text{tot}} = 44.4 \,\text{km s}^{-1}$

Sohn et al. (2012, in preparation)

In terms of 3D velocity

What does this mean for the MW virial mass?

Phase space in terms of total velocity

Unbound subhalos: very rare

Where is Leo I in this phase space?

Deriving a constraint on $M_{\mbox{\scriptsize MW}}$

constant energy contour at Leo I's V_{3D} for M_{vir}=1.5e12

Deriving a constraint on $M_{\mbox{\scriptsize MW}}$

constant energy contour at Leo I's V_{3D} for M_{vir}=1.5e12

Deriving a constraint on $M_{\mbox{\scriptsize MW}}$

constant energy contour at Leo I's V_{3D} for M_{vir}=1.5e12

The Virial Mass of the Milky Way

The Virial Mass of the Milky Way

The Virial Mass of the Milky Way

Cosmology dependence?

Cosmology Independence

Phase space is stratified based on infall time

MBK et al. 2012 (in preparation); also see Rocha et al. 2012

Phase space is stratified based on infall time

MBK et al. 2012 (in preparation); also see Rocha et al. 2012

Phase space is stratified based on infall time

MBK et al. 2012 (in preparation); also see Rocha et al. 2012

Only 3D velocity is stratified based on T_{infall}

Subhalos with zpeak in last 4 Gyr

One implication of a 1.5x10¹² Milky Way

- baryonic allotment of the MW is ~2.5×10¹¹ M_{sun}. Observed baryonic content is ~7×10¹⁰ M_{sun}. Missing ~1.8×10¹¹ M_{sun} of baryons.
 - Maybe these baryons never made it into the halo?
 - Maybe these baryons were ejected from the halo?
 - Maybe these baryons be hidden in an extended hot gas corona?

• These 3 possibilities have very different implications for our understanding of galaxy formation

MW hot gas constraints

Fang, Bullock, MBK 2012: constraints on hot ($\sim 10^6$ K) gas in the MW halo depend strongly on adopted gas profile.

- Hot gas disk (from MW ISM): negligible contribution to MW baryon budget
- NFW distribution for gas (c=3 or 12): hot halo can only hold a small fraction of missing baryons (cf. Anderson & Bregman 2010)
- extended, cored distribution: most or all of the missing baryons could be within the virial radius, even for $M_{vir} \sim 1.5 \times 10^{12}$
 - profile motivated by Maller & Bullock 2004: adiabatic gas in hydrostatic equilibrium with NFW dark matter halo

Grcevich & Putman 10⁰ Density (cm^{-s}) ram pressure 10⁻²) stripping of dwarfs 10⁻⁴ NFW (a) 10⁻⁶ 10⁶ Extended corona Local Hot Disk 10⁵ Pressure/k (cm^{-s}K) 10⁴ HVC pressure 10³ confinement in the Magellanic Stream

NFV

MB

Stanimirovic et al. 🗆

Fox et al. \triangle

100

DISK

10¹ 10 Distance (kpc)

10²

(c)

Fang, Bullock, MBK (2012, to be submitted)

Conclusions

- The virial mass of the Milky Way is *important*. Reducing the uncertainty in M_{vir,MW} is crucial for making progress in several areas of galaxy formation.
- Leo I plays an outsized role in driving satellite-based estimates of M_{MW}, but interpreting its motion has been contentious
- Sohn et al. 2012 have measured Leo I's proper motion: Leo I has significant tangential velocity (~100 km/s).
- LCDM simulations: relaxed hosts have virtually no unbound subhalos
- comparing to LCDM simulations, find $M_{vir,MW}=(1.5-2.1)\times 10^{12} M_{sun}$ and $M_{vir,MW} > 10^{12} M_{sun}$ at 95% confidence
- strong correlation between orbital energy and infall time; in general, not present only with radial velocities, need proper motions

Galaxy-galaxy lensing + Tully-Fisher

 $V_{\rm opt,MW} = 240 \pm 10 \,\rm km \, s^{-1}$

median V_{200c}=190 km/s for Milky Way's stellar mass.This gives M_{vir}~2.5×10¹²

Reyes et al. 2012

Galaxy-galaxy lensing + Tully-Fisher

 $V_{\rm opt,MW} = 240 \pm 10 \,\rm km \, s^{-1}$

median V_{200c}=190 km/s for Milky Way's stellar mass.This gives M_{vir}~2.5×10¹²

for M_{vir} =1.5×10¹², get V_{200c} =157 km/s

Reyes et al. 2012

Galaxy-galaxy lensing + Tully-Fisher

 $V_{\rm opt,MW} = 240 \pm 10 \,\rm km \, s^{-1}$

median V_{200c}=190 km/s for Milky Way's stellar mass.This gives M_{vir}~2.5×10¹²

for M_{vir} =1.5×10¹², get V_{200c} =157 km/s

for M_{vir}=7×10¹¹, get V_{200c} =122 km/s

Reyes et al. 2012