

Rhea Remus, Andreas Burkert, Jens Thomas, Peter Johansson, Thorsten Naab, Ludwig Oser, Klaus Dolag

Remus + 2012, submitted

Barnes 88; Hernquist 89; Springel+ 02; Naab+ 06; Khochfar+ 06; Cox+ 06; Lotz+ 08,10; Hopkins+ 08; Johansson+ 09; Jesseit+09; Oser+ 10

Atlas 3D and the stellar structure of ellipticals

(Cappellari+11; Emsellem+11; Bois+11)

Dark matter in ellipticals: The PN survey

(Mendez+ 01; Romanowski+ 03; Dekel+ 05)

SLACS strong lensing survey (Auger+ 10; Barnabe+ 11; Lyskova+ 12)

TEE 11430-5010	5055 (1111) - 0010	SDEE 11106 (5328	EDEE 11050-0430	EDGE UIAT ONA		CDCC 10941 4 1924	SPEE MOLALOUIS	EREC HATS-CHT	
2055 3142046019	5055 32321-0939	5055 11106+5226	5055 51029+0420	5055 31143-0144	5055 30955 10101	5055 30841+3824	5055 3004440113	5055 5143246317	5055 31451-025
BDSS J0959+0410	5055 J1032+5322	5055 /1443+0304	5055 J1218+0830	SD65 J2238-0754	5055 J1538+5817	5055 J1134+6027	5055 J2303+1422	5055 J1103+5322	5055 J1531-010
1095 J0912+0029	5055 J1204+0358	5055 J1153+4612	5055 12			-2	5055 J0037-0942	SD55 J1+02+6321	SDSS J0728+383
				total	\sim /		a lange		Ser.
5055 J1627-0063	SDSS J1205+4910	S055 J1142+1001	SDSS J0946+1006	SDSS J1251-0208	SDSS J0029-0055	5055 J1636+4707	SDSS J2300+0022	5055 J1250+0523	SDSS J0959+441
8055 J1627-0063	SDSS J1205+4910	SDSS J1142+1001	SDSS J0946+1006	SDSS J1251-0208	SDSS J0029-0065	5055 J1636+4707	SDSS J2300+0022	SDSS J1250+0523	SDSS J0959+441
5055 J1627-0063	SDSS J1205+4910	SDSS J1142+1001 SDS5 J1621+3931	SDSS J0946+1006	SDSS J1251-0208	SDSS J0029-0065	5055 J1636+4707 5055 J1020+1122	SDSS J2300+0022 SDS5 J1430+4105	SDSS J1250+0623	SDSS J0959+441 SDSS J0109+150
DSS J0956+5100	SDSS J0822+2652	SDSS J1142+1001 SDSS J1621+3931	SDSS J0946+1006	SDSS J1251-0208	SDSS J0029-0065	SDSS J1636+4707 SDSS J1020+1122	SDSS J2300+0022	SDSS J1250+0623	SDSS J0959+441

Coma Survey

Mehlert et al 2000, Thomas et al 2007, 2009, 2011

Isolated binary mergers (Johansson+09)

- Gadget 2 code
- Star formation and Supernova feedback according to Springel & Hernquist 2003
- BH-feedback using Springel 2005
- Hernquist Dark matter profiles
- Baryonic mass fraction of 0.044

Our sample:

- 4 Ellipticals from 1:1 spiral merger
- 5 Ellipticals from 3:1 spiral merger
- 1 Elliptical from a E-Sp merger

Initial gas fractions (0%, 20%, 80%) Initial orbits (G13, G09, G01)

Isolated binary mergers (Johansson+09)

- Gadget 2 code
- Star formation and Supernova feedback according to Springel & Hernquist 2003
- BH-feedback using Springel 2005
- Hernquist Dark matter profiles
- Baryonic mass fraction of 0.044

Our sample:

- 4 Ellipticals from 1:1 spiral merger
- 5 Ellipticals from 3:1 spiral merger
- 1 Elliptical from a E-Sp merger

Initial gas fractions (0%, 20%, 80%) Initial orbits (G13, G09, G01)

- Controlled initial conditions
- Observed formation scenario
- Realistic progenitor spirals
- No cosmological treatment

Cosmological resimulations (Oser+ 10, 11)

More "realistic" (???) initial conditions
Full mass range of ellipticals

• No spirals as progenitors

17 central ellipticals, 4 substructure ellipticals

The halo-spheroid conspiracy

The halo-spheroid conspiracy in cosmological simulations

Binary mergers

• Close to solution of isotropic Jeans equation

• Very close to isothermal

$$\rho(r) = \frac{C\sigma(r)^2}{4\pi G r^2}$$

Cosmo

- Very close to isotermal
- Large spread in density slope
- Steep slopes show large deviation from isotropic Jeans solution

Stellar dispersion slope versus total density slope

- Comparison with Thomas et al. favors multiple merger origin
- Steepness of density slope depends critically on central concentration of baryonic component

(see however van Dokkum & Conroy 11,12: Conroy & van Dokkum 12)

Slope evolution and violent relaxation

Slope evolution and violent relaxation

Slope evolution and violent relaxation

Massive elliptical: multiple substantial mergers *Low-mass elliptical: minor mergers and accretion*

Summary

- The stellar and dark matter density and velocity dispersion profiles of ellipticals are **not** power laws.
- Their combined profiles can however be well fitted by *power-laws* in the radius range of 0.1 to 3 reff.
- *Mergers* of 2-component systems lead to combined power-law profiles that are isothermal (violent relaxation???).
- **Deviations** from isothermal profiles therefore contain valuable information about the accretion history of a given galaxy.
- Cosmological simulations, despite their known caveats, are in good agreement with recent observations of Coma ellipticals.