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The CGM-Galaxy Interactions

Gas from IGM inflows into galactic halos•Galactic outflows

•Galactic outflows observed in local starburst 
with v ~ hundreds km/s (e.g., Shapley+2003; 
Veilleux+2005; Weiner+2009) •At high z,  “cold” accretion mode 

dominates (e.g., Kereš+ 2005, 2009; Dekel & 
Birnboim 2006; Ocvirk+2008) 

•Prediction of cold stream detection
 

1) statistical prescription using 
cosmological volumes (e.g., Dekel+2009; 
van de Voort+2012) and  

2) “zoom-in” simulations(e.g., Fumagalli+ 
2011; Faucher-Giguère & Kereš 2011; Kimm
+2011; Stewart+2011; Goerdt+ 2012)  

•Far-UV spectra of angular pairs of galaxies/
quasar-galaxies provides detailed map of the 
CGM metals (e.g., Steidel+2010) and H I (e.g., 
Rudie+2012) at higher z 

•Increasing amount of data about the CGM at 
low redshift (e.g., Prochaska & Hennawi 2009; Chen
+2010; Crighton+2011; Prochaska+2011; Tumlinson
+2012; Werk+2012)
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The Eris2 Simulation

• TreeSPH code Gasoline (Wadsley et al. 2004)  

• SF: dρ*/dt = εSFρgas/tdyn ∝ ρgas1.5  when gas has nH > nSF 

• Blastwave feedback model for SN II (Stinson+ 2006):  radiative cooling shut-off 
according to analytical solution from McKee & Ostriker (1977). 

• Radiative cooling for H, He and metals were computed using Cloudy (Ferland+ 
1998), assuming ionization equilibrium under uniform UVB (Haardt & Madau 2012) 

• Turbulent diffusion model (Wadsley+ 2008; Shen+2010) to capture mixing of metals in 
turbulent outflows. 

• Same initial set up as in Eris (Guedes+2011)

Galaxy mDM (Ms) mSPH (Ms) εG (pc) nSF (cm-3)

Eris2 9.8 x 104 2 x 104 120 20.0
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The Eris2 Simulation

• TreeSPH code Gasoline (Wadsley et al. 2004)  

• SF: dρ*/dt = εSFρgas/tdyn ∝ ρgas1.5  when gas has nH > nSF 

• Blastwave feedback model for SN II (Stinson+ 2006):  radiative cooling shut-off 
according to analytical solution from McKee & Ostriker (1977). 

• Radiative cooling for H, He and metals were computed using Cloudy (Ferland+ 
1998), assuming ionization equilibrium under uniform UVB (Haardt & Madau 2012) 

• Turbulent diffusion model (Wadsley+ 2008; Shen+2010) to capture mixing of metals in 
turbulent outflows. 

• Same initial set up as in Eris (Guedes+2011)

Galaxy mDM (Ms) mSPH (Ms) εG (pc) nSF (cm-3)

Eris2 9.8 x 104 2 x 104 120 20.0

Very high resolution - 4 M particles 
within Rvir at z =2.8,  to resolve the 

galaxy structure, the progenitor 
satellites and dwarfs

High SF threshold, allow the 
inhomogeneous SF site to be 
resolved and localize feedback
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Metal Cooling Under UV Radiation

Shen+. 2010

•Metal cooling 
computed 
using CLOUDY 
(Ferland 1998)

•With UVB 
from Haardt & 
Madau (2001)

•Function of ρ, 
T, Z, z
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Metal Cooling Under UV Radiation

Shen+. 2010

Effect of metal cooling: increase the 
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Metal Cooling Under UV Radiation

Effect of UV: 
Largely increase atomic cooling for T < 104 K

Decease the cooling at T > 104 K (more 
significant for lower density gas)

Shen+. 2010

Effect of metal cooling: increase the 
total radiative cooling by > an 

order of magnitude

•Metal cooling 
computed 
using CLOUDY 
(Ferland 1998)

•With UVB 
from Haardt & 
Madau (2001)

•Function of ρ, 
T, Z, z
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Smagorinsky Model of Turbulent Diffusion

• Most basic turbulent model: (κTurb has units of velocity × length)

• Smagorinsky model (Mon. Weather Review 1963) -- Diffusion Coefficient determined by 
velocity Shear 

• Sij = trace-free strain rate of resolved flow; ls = Smagorinsky length. For 
incompressible grid models ls2 ~0.02 Δx2

• For SPH we use κTurb= C |Sij|h2  with C ~ 0.05 (Wadsley, Veeravalli & Couchman 2008; See 
also Scannapieco & Brüggen 2008, Grief et al 2009)

• After implementation of turbulent diffusion, SPH is able to produce the entropy 
profile similar to grid codes

Wadsley+ (2008); Shen+(2010)
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Eris2 and Its Metal-Enriched CGM at z = 2.8

• At z=2.8, Eris2 has Mvir and M* 
close to an LBG but lower than 
typical observed LBGs (e.g, Steidel+ 
2010)

• More than half of metals locked in 
the warm-hot (T > 105) phase 

• Cold, SF gas has 12+log(O/H)=8.5, 
within the M*-Z relationship (Erb
+2006) 

• The metal “bubble” extends up to 
250 kpc, 5 Rvir

Mvir(Msun) Rvir (kpc) M*(Msun) SFR(Ms/yr) 12+log(O/H) T>105 K (%) Rz <Zg>vir

2.6×1011 50 1.5×1010 20 8.50 54% ~5 Rvir 0.7 Zsun

600 x 600 x 600 kpc3 projected map of gas 
metallicity. The disk is viewed nearly edge on

 

Shen+ (2012) arXiV:1205.0270
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• 600 x 600 x 10 kpc 
slice, projected to x-
y plane, disk nearly 
edge-on

• Max projected 
averaged velocity  
~300 km/s (host)

•  Metallicity is high 
along the miner axis 
but non-zero along 
the major axis (Rubin
+ 2012; Kacprzak+2012)

• Average outflow 
velocity decrease at 
larger distances and 
join the inflow -- 
halo fountain 
(Oppenheimer+ 2010 ) 

Kinematics of the Metal-Enriched CGM
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Z 

Friday, August 17, 2012



• 600 x 600 x 10 kpc 
slice, projected to x-
y plane, disk nearly 
edge-on

• Max projected 
averaged velocity  
~300 km/s (host)

•  Metallicity is high 
along the miner axis 
but non-zero along 
the major axis (Rubin
+ 2012; Kacprzak+2012)

• Average outflow 
velocity decrease at 
larger distances and 
join the inflow -- 
halo fountain 
(Oppenheimer+ 2010 ) 

Kinematics of the Metal-Enriched CGM

inflow along 
filaments, lower Z or 

pristine

outflows: ⊥ to 
disk plane, higher 

Z 

Friday, August 17, 2012



• 600 x 600 x 10 kpc 
slice, projected to x-
y plane, disk nearly 
edge-on

• Max projected 
averaged velocity  
~300 km/s (host)

•  Metallicity is high 
along the miner axis 
but non-zero along 
the major axis (Rubin
+ 2012; Kacprzak+2012)

• Average outflow 
velocity decrease at 
larger distances and 
join the inflow -- 
halo fountain 
(Oppenheimer+ 2010 ) 

Kinematics of the Metal-Enriched CGM

inflow along 
filaments, lower Z or 

pristine

outflows: ⊥ to 
disk plane, higher 

Z 

Accreting
dwarfs
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Computing Fraction of Ions & Column Density Map

• Post-processing using photo-
ionization code Cloudy (Ferland+ 
1998) 

• Incident radiation includes the 
extragalactic UV background 
(Haardt & Madau 2012) and stellar UV 

• Stellar UV radiation: using 
Starburst99 (Leitherer+ 1999),  

assuming a constant SFR of 20 
Msun/yr. 

• Escape fraction fesc = 3%, Jd = J0/
(4πd2) 

• Assuming gas is optically thin: not 
valid for column NHI above LLS.

UVB
5 kpc

15 kpc
45 kpc

135 kpc

Photo-ionization heating due to local UV 
radiation is not taken into account. 
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CGM Metals Traced by Different Ions

• Multi-phase CGM:  low and high ions co-exist in same absorbers

• Covering factors of low ions (C II, Si II) decrease more rapidly than high ions 

• O VI has large covering factor up to 4 Rvir, MO(CGM) ~5x 107 Msun> MO(ISM) 

200

100

0

-100

-200

200

100

0

-100

-200

-200     -100     0     100     200 -200     -100     0     100     200 -200     -100     0     100     200 

           HI:  1014-1021 cm-2 

           Metals:  1011-1016 cm-2 

Calculating ion 
fractions: 

•UVB + non-
uniform stellar UV 
assuming constant 
SFR 20 Msun/yr

•Photo-heating of 
local UV not 
included

•Assuming optically 
thin
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High ions: Collisional Ionization or Photoionization?

• O VI: mostly collisional ionized within 2 Rvir, but photo-ionized at larger distance

Cooler (T~3-5 
×104 K), 
clumpier, 
photoionized 
OVI

Hotter 
(T>105K), 
more diffuse, 
collisionally 
ionized OVI

Si IV and C IV: 
Mostly photo-

ionized 
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Inflowing and Outflowing CGM

Inflow Outflow Total

 H I Si II C II Si IV C IV O VI

Inflow mass (%) 77% 66% 66% 50% 44% 32%

•Coexistence of inflow and 
outflow in the CGM: 

•H I: cold inflow 
perpetrates viral radius. 
with 2Rvir, 90% system 
with N HI > 1017.2 cms 
(LLS) is inflowing. 

•Outflow gas increases the 
H I covering factor at 
large b. 

•Low ions (C II or Si II) 
similar to H I

•O  VI: by mass 68% 
outflow, 32% inflow 

•C IV & Si IV: inflow 
and outflow 
contribute similarly 
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Synthetic Absorption Spectra

• Optical depth τ(ν) =∑j (mjZj/m)W2D(rjl, hj)σj(ν);     σj(ν) - cross section (Voigt 
function),  W2D(rjl, hj) - 2D SPH kernel

• Rest frame equivalent width: W0 = c/ν02∫[1-e-τ(ν)]dν
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Synthetic Absorption Spectra

• Optical depth τ(ν) =∑j (mjZj/m)W2D(rjl, hj)σj(ν);     σj(ν) - cross section (Voigt 
function),  W2D(rjl, hj) - 2D SPH kernel

• Rest frame equivalent width: W0 = c/ν02∫[1-e-τ(ν)]dν

•Most, but not 
all, components 
exist in both 
high and low 
ions -- Multi-
phase nature of 
absorbers

•Velocity range ~ 
± 300 km/s

•Metal enriched 
infalling gas: 

•Rvir < r < 2Rvir 
•δ ~ 100 
•Z > 0.03 Zsun

•Enriched gas around 
nearby dwarf galaxy 
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W0-b Relation and Comparison with Observations

• 3 orthogonal projections, each has 500 x 500 evenly-spaced slightlines within 
b = 250 kpc region centered at the main host

•Metal Line strength 
decline rapidly at 1-2 Rvir

•Line strength decline 
less fast for C IV, OVI 
and H I

•Ly α: remains strong to 
>~ 5 Rvir

•Broadly consistent with 
observations from 
Steidel+ (2010) and 
Rakic+ (2011)

•W0 for metal ions: 
Higher than simulations 
without strong outflows 
(e.g., Fumagalli+ 2011; 
Goerdt + 2012) 

• At small b, lines are 
mostly saturated -- W0 
determined by velocity
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W0-b Relation and Comparison with Observations

• 3 orthogonal projections, each has 500 x 500 evenly-spaced slightlines within 
b = 250 kpc region centered at the main host

•Metal Line strength 
decline rapidly at 1-2 Rvir

•Line strength decline 
less fast for C IV, OVI 
and H I

•Ly α: remains strong to 
>~ 5 Rvir

•Broadly consistent with 
observations from 
Steidel+ (2010) and 
Rakic+ (2011)

•W0 for metal ions: 
Higher than simulations 
without strong outflows 
(e.g., Fumagalli+ 2011; 
Goerdt + 2012) 

• At small b, lines are 
mostly saturated -- W0 
determined by velocity

Fumagalli+ (2011)
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Covering Factor of H I and Metal Ions 

Min/Mtot (r<Rvir) ~2/3

Mout/Mtot (r<Rvir) ~1/3

dMin/dt (T <105K ) 18 Msun/yr

Fraction of cold 
inflow in satellites 

35%

dMin/dt (T >105K ) 5 Msun/yr

Zin(r=Rvir) 0.05 Zsun

Zout(r=Rvir) 0.56 Zsun

<Zin>(r<Rvir) 0.21 Zsun

<Zout>(r<Rvir) 0.54 Zsun

NLLS, in/NLLS, tot >90%

<vLLS, inflow> <~150 -200 km/s

CF(LLS with N CII> 
1013 cm-2) 

22% (b<Rvir)
10% (b<2Rvir)

O VI

Si IV

Si II

C IV

C II

Cf of metal ions with Nion > 
1013 cm-2 within 1 or 2 Rvir

N HI > 1014cm-2 
b < 200 kpc

N HI > 1015.5 cm-2 N HI > 1017.2 cm-2 

•In reasonable agreement with Rudie+ (2012) for H I, but in the low 
side  

•HI covering factor: slightly higher, but comparable to simulations 
without strong outflows (e.g. Fumagalli+2011, Faucher-Giguère & Kereš 2011) 

• O VI has covering 
factor (fc) of unity 
in 2 Rvir.  C IV also 
have large fc

•C II, Si II, Si IV: 
smaller fc , decline 
fast when b > Rvir  

H I
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Detecting the Cold Streams: H I and Low Ions
• Cold (T < 105 K) inflow rates at Rvir   

dMin, cold/dt = 18 Msun/yr, comparable to 
the SFR; Min, hot/dt ~ 5Msun/yr

• 35% inflow gas from nearby dwarfs

• Within 2 Rvir: 90% of LLS are inflowing 
gas, vin <~ 150 -200 km/s 
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Detecting the Cold Streams: H I and Low Ions
• Cold (T < 105 K) inflow rates at Rvir   

dMin, cold/dt = 18 Msun/yr, comparable to 
the SFR; Min, hot/dt ~ 5Msun/yr

• 35% inflow gas from nearby dwarfs

• Within 2 Rvir: 90% of LLS are inflowing 
gas, vin <~ 150 -200 km/s 

Inflow only,  optically thick gas

H I

C II

H I

C II

• Cold inflows are enriched: ZLLS > 0.03 Zsun for r 
< Rvir, and ZLLS > 0.01 Zsun within 2Rvir

• Still lower than outflow metallicities Zout = 
0.1-0.5 Zsun
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The NOVI-b Relation in Eris2: Comparison with Low z 
Starburst Galaxies 

•At z = 2.8, Eris2 has 
sSFR ~ 10-9  yr-1, close 
to the local star burst 
galaxies in Tumlinson
+ (2011) and 
Prochaska+ (2011) 

•N OVI-b relation 
agreement with 
observations; but 
higher at b< 0.1 Rvir

• Typical  N OVI 

>~1013-14 cm-2 up to 3 
Rvir

•N OVI -b mostly 
determined by SFR? 

• Rvir ~ 160 kpc for sub-L* galaxies (Prochaska+ 2011)

•  Rvir ~ 200-300 kpc for L* galaxies (Tumlinson+2011)
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The Evolution of the CGM (Down to z=2.8)
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The Evolution of the CGM (Down to z=2.8)

•From z = 8 to z ~ 3, the metal 
“bubble” scales well with Rvir

•z ~ 3 to z = 0?

z = 5.0, Rvir = 19 kpc

z = 2.8, Rvir = 50 kpc

z = 6.8, Rvir = 11 kpc
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The Effect of Gas Self-Shielding:  W0-b

•Ly α: The data points within 10 kpc 
increases significant, W0 become 
much higher than observations 

•Metal lines: 
change in W0 is 
not significant 
since lines are 
saturated

•Transition from 
optically thin to 
thick:  nH ~ 0.01 
cm-3  (e.g. Fumagalli
+2011; Goerdt
+2012)

• Increase NH I, 
NSi II, decrease N 
CIV, NCII, NSiIV

• OVI is not 
affected by much
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The Effect of Metal and Thermal Diffusion - I

With Diffusion200

100

0

-100

-200

200

100

0

-100

-200

-200     -100     0     100     200 -200     -100     0     100     200 -200     -100     0     100     200 

No turbulent mixing 1.  Larger metal bubble (cf. Shen+ 2010); 
   2. “Clumpier” CGM due to higher Z and metal cooling;  
   3. Inflowing dwarfs are enriched, but less for the material in between 
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The Effect of Metal and Thermal Diffusion - I

With Diffusion200
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-100

-200

200
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0

-100

-200

-200     -100     0     100     200 -200     -100     0     100     200 -200     -100     0     100     200 

No Diffusion

No turbulent mixing 1.  Larger metal bubble (cf. Shen+ 2010); 
   2. “Clumpier” CGM due to higher Z and metal cooling;  
   3. Inflowing dwarfs are enriched, but less for the material in between 
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• The covering factor of metal ions at log N > 13 does not change significantly

• The covering factor of LLS H I, C II and Si II decreases because the CGM is 
clumpier

• CF for more diffuse H I and C IV increases because of more efficient wind 

The Effect of Metal and Thermal Diffusion - II

HI 
logN=15.5

HI 
logN=17.2

C II
C IV

Si II

Si IV

O VI
With diffusion
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The Effect of Metal and Thermal Diffusion III

• Covering 
factor of 
both H I and 
low ions 
decreases

• Inflowing gas 
with N HI > 
1017.2 cm-2 
and N CII 
>1013 cm-2 
decreases 
from 22% to 
16% in Rvir 

and from 
10% to 5% 
in 2Rvir  

With Metal Diffusion

H I

C II

No Metal Diffusion

H I

C II
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Effect of Metal Cooling on the CGM 

Cooler phase of 
enriched CGM

SF occurs 
in much 

colder gas 
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Distribution of Metals and Ions in ρ-T plane
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Summary

• Inflows and outflows coexist, about 1/3 of gas (by mass) within Rvir is outflowing, 
consistent with findings from cosmological simulations (e.g., van de Voort +2012); 

• O VI absorbers have both collisional ionized and photoionized components, depending 
on distance.  Large covering factor with typical NOVI > 1014 cm-2, consistent with the 
data from local starbursts (Tumlinson+2011, Prochaska+2011) . 

• Synthetic spectra shows inflows and outflows are multi-phase, although not all the O VI 

systems has corresponding low ion counterpart.

• W0-b relation from Eris2 appears to be in reasonable agreement of observations of 
Steidel +(2010). Feedback & outflows are important, however inflowing material 
contributes significantly to the absorption line strength. 

• The covering factor of LLS system is about 27% within Rvir, in good agreement with 
Rudie+ (2012), it is slightly higher than, but consistent with simulations with no strong 
outflows (Fumagalli+ 2011; Faucher-Giguère & Kereš 2011); 90% of LLS within 2Rvir are 
inflowing cold streams. 

• The cold streams are enriched with CF of CII > 1013 about 22% within Rvir -- possible 
to detect inflows with metal line absorption.  

• Metal mixing enhance the detection of cold flows using metals. 

• Cooling due to metal lines are important for generating cooler phase of the CGM and 
possibly crucial for detection of the low ions.
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