Revisiting angular momentum and galaxy formation

Aaron J. Romanowsky and S. Michael Fall (UCO; STScI)

ApJS, in press, <u>http://arXiv.org/abs/1207.4189</u>

Fundamental physical parameters of galaxies

Evolution in the *j*-*M* plane: DM to baryons

- 1) Gas decouples from DM: dissipative collapse $M_{\rm gas} = f_{\rm b} M_{\rm vir}$ $j_{\text{qas}} = j_{\text{vir}}$
- 2) Stars form (in cold disks?): $M_* = f_* f_b M_{\rm vir}$ $j_* = j_{\text{vir}}$

Comparing *j*_{*}–*M*_{*} observations to *ACDM* predictions provides direct constraints on $(f_i / f_*^{2/3})$

*j*_{*}-*M*_{*} observations: *ca.* 1983

Fall 1983 (data for Sb-Sc spirals: Rubin+1980 etc. for *centers* of ellipticals: Davies+1983)

Spirals: $j_* \propto M_*^{3/4}$

→ matches slope + normalization for DM halos if: $f_* f_b \sim 0.05, f_j \sim 1$ → (weak) *j* "conservation" !

 $j_{d} = 2 v_{rot} R_{d}$ $j_{E} = 2.5 v_{rot} R_{e}$

*j*_{*}-*M*_{*} observations: *classic constraints on theory*

j∗-*M*∗ diagram:

- → simple collapse model explains observed *disk* scaling relations ⁴
 - (Fall & Efstathiou 1980; Dalcanton+1997; Mo, Mao & White 1998)
- → benchmark for simulations
- (e.g. Navarro & Steinmetz 1997; Maller & Dekel 2002; Governato+2007; Guedes+2011)

*j*_{*}-*M*_{*} observations: *classic constraints on theory*

ا ب

хрс

J/M (km/sec

j∗-*M*∗ diagram:

- → simple collapse model explains observed *disk* scaling relations
 - (Fall & Efstathiou 1980; Dalcanton+1997; Mo, Mao & White 1998)
- → benchmark for simulations
- (e.g. Navarro & Steinmetz 1997; Maller & Dekel 2002; Governato+2007; Guedes+2011)

What about E/S0s?

- → are the E "data" correct?
- \rightarrow do Sa, S0s fill the gap?
- \rightarrow does spread in *j*_{*} match
 - λ spread for Λ CDM halos?
- \rightarrow do we expect Es to conserve j_{vir} ?

j in ellipticals: theory

Vitvitska+2002:

Mergers of DM halos cause j, λ spikes \rightarrow ellipticals expected to have *higher* λ_{vir} than spirals!

(but see:

Hetznecker & Burkert 2006; D'Onghia & Navarro 2007)

Major mergers of disk galaxies: *internal j** *transfer:*

- \rightarrow stars in outer regions spun up
- → observations…?

(e.g., Hernquist 1992, 1993; Bendo & Barnes 2000; Cretton+2001)

"Secure" measurements of *j*^{*} in elliptical galaxies

Missing *j*^{*} in outer regions of ellipticals?

New observational era of E/S0 halo kinematics

(e.g., Proctor+2009; Coccato+2009; Arnold+2011)

PN.S SMEAGOL

http://sluggs.ucolick.org

stars, planetary nebulae, globular clusters

Observed outer rotation generally const or *declining*

→ little indication of major-merger spin-up! (revised story fr Arnaboldi+1996; Kissler-Patig & Gebhardt 1999, etc.)

*j*_{*}-*M*_{*} observations: *ca.* 2012

→ Fundamental constraints for galaxy formation

Trends in j_* driven by disks and bulges?

NB: trends may be partially driven by simplified bulge modeling → photometric+kinematic bulge-disk decompositions needed

Simple, physical framework for galaxies

All galaxies are combination of bulge+disk w/universal scaling relations? \rightarrow sizes of both bulges and disks set by j_*-M_* bimodality? \rightarrow galaxy morphology as manifestation of high- and low- j_* material?

Modelling the spiral-elliptical differences

Two extreme scenarios tested with mock data sets: \rightarrow spin bias: spirals/ellipticals formed in high/low- λ halos \nearrow \rightarrow variable f_j : different angular momentum retention

A new galaxy bimodality

Simple unbiased model implies $f_j \sim 0.6, 0.1$ for spirals, ellipticals

→ Need two modes of galaxy evolution with systematically different angular momentum retention

Mechanisms for angular momentum bimodality?

(Danovich+2012; Kimm+2011; Dubois+2012; Vogelsberger+2012)

→ Need to understand why net result agrees with simple spherical collapse model, with little scatter

Explaining different *j* retention

Evolution in j_*-M_* plane is not arbitrary, must involve processes respecting conservation laws

9

10

 $\log (M_*/M_{\odot})$

11

12

Summary: *j*-*M* diagram revisited

- first compilation of all galaxy types
- extended kinematics data for E/S0s
- *j*-offset verified between spirals & Es
- universal trends for disks and bulges
- small scatter in *j**-*M** relations
- → fundamental constraints for galaxy formation
- disks match up well to Λ CDM halo spins with *j* (weakly) conserved
- Es low *j* not drawn from tail of halo λ distribution
 - \rightarrow require bias in j_{gas} , or j loss