Roediger et al. 2012, ApJ (in print) arXiv:1201.6361

Joel C. Roediger (Queen's) Stéphane Courteau (Queen's) Patricia Sánchez-Blázquez (UNAM) Michael McDonald (MIT)

Disk galaxies come in many Types (I)

Bland-Hawthorn et al. (2005); Vlajić et al. (2009)

Disk galaxies come in many Types (II)

Stellar ages should **increase** beyond break in Type II's (Roškar et al. 2008; Sánchez-Blázquez et al. 2009; Martínez-Serrano et al. 2009)

Field Type II's exhibit upturns in their age gradients (de Jong et al. 2007; Barker et al. 2011; Yoachim et al. 2012; Radburn-Smith et al. 2012)

Disk galaxies come in many Types (III)

Younger et al. (2007)

What about cluster disks?

McDonald et al. (2011) – g, r, i, z & H surface photometry for 286 Virgo galaxies

Morphology	N	B/T _i	Luminosity (M _i)	Surface brightness ($\mu_{e,i}$)	Size (r _{e,i})
Sa-Sm	44	0 - 0.24	-17.4 — -21.0 mag	21.3 – 23.3 mag arcsec ⁻²	1.9 — 5.5 kpc

Roediger et al. (2011a,b) - colour/stellar population analysis of McDonald et al. data

Outer disk structure depends on enrivonment

^b values from Gutierrez et al. (2011)

Age upturns are found in all disk Types ...

Π

	$d < A > /dr_0$	$d < A > /dr_i$	VCC
	(0)(1)(0)	(0)(kpc)	(1)
	(3)	(2)	(1)
		Type I	
В	$+1.78 \pm 0.51$	-5.70	0583
0	$+3.05 \pm 0.38$	-2.13 ± 0.40	1410
fi	$+0.56 \pm 0.30$	-6.88 ± 1.80	1566
		Type II	
0	$+0.05 \pm 0.02$	-0.32 ± 0.02	0596
of	$+1.25 \pm 0.42$	-3.61 ± 0.72	0849
J	$+0.56 \pm 0.02$	-0.19 \pm 0.04	0865
	$+1.29 \pm 0.29$	-2.04	1021
	$+4.72 \pm 0.95$	-1.09	1654
	$+0.54 \pm 0.07$	-0.58 \pm 0.18	1929
	$+0.35 \pm 0.11$	-0.59 ± 0.16	1943
1	$+0.48 \pm 0.02$	-0.40 ± 0.03	1987
-		Type III	
น	$+0.88 \pm 0.30$	-2.04 ± 0.78	0692
'	$+0.31 \pm 0.04$	-0.78 ± 0.34	0912
	$+1.10\pm0.11$	-0.60 \pm 0.11	1379
	$+2.26 \pm 1.18$	-1.82 ± 0.37	1686
	$+0.54 \pm 0.23$	-1.67 ± 0.46	1811
	$+0.42 \pm 0.35$	-0.28 ± 0.08	2012

Bootstrap linear fits to inner and outer gradients of upturning age profiles

Large range in upturn strength!

... and those upturns correlate with the breaks in Virgo Type II's ...

(as predicted by simulations; Roškar et al. 2008, Sánchez-Blázquez et al. 2009; Martínez-Serrano et al. 2009)

... but upturns are not that common overall

T /	1.0			
	4 1 2	18	19.1	
100			120	
	4.4			

Туре	Positive	Flat	Negative	Upturn	
I	7	8	2	3	
п	8	3	3	8	
III	7	5	2	6	

Models

Туре	Positive	Flat	Negative	Upturn	
Ι			~		
II				✓	
Ш				~	

Why do cluster and field disks differ?

Age gradients within Virgo disks **do not correlate** with their structure

Flat and positive age gradients are found most often **near cluster core**

Summary

- 1. Type II disks are rarer in clusters than in the field
 - outer structure of disks sensitive to repeated tidal forcing
- 2. Age upturn phenomenon found amongst all disk Types in Virgo
 - stellar migrations a generic aspect of disk galaxy evolution?
- 3. Flat and positive age gradients dominate amongst Virgo disks
 - tides and ram pressure stripping mix and quench outer disks

Future work

For observers:

Analyse deeper imaging (< 28 r-mag arcsec⁻²) for cluster disks to produce unmatched description of outer disk structure in dense environments (e.g., NGVS).

For theorists:

Produce high-res hydrodynamic simulations of cluster galaxies, including ram pressure stripping and harassment.

See Roediger et al. (2012), arXiv:1201.6361