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The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h�1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.

2.2 Higher order SPH: OSPH0

In this section, we derive the equations of motion for our new
higher order SPH (OSPH0). Our philosophy is to minimise
the truncation errors in the equations of motion, rather than
the usual strategy where we demand that conservation laws
are exactly held. We call this new strategy convergent.

Consider the following set of equations:
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where ⇤̂i is as in equation 8 with ⇥ = 1/A
1
� . Taylor ex-

panding as in §2.1 and RHA10, it is straightforward to show
that this system of equations is now accurate to O(0) by
construction.
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Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di⇥erences
being that ⇤i⇤̂i in the denominator becomes ⇤2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e⇥ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.

2.2.1 The continuity equation in OSPH0

Notice that, unlike OSPH (RHA10), we now use the stan-
dard SPH density estimator (equation 19). This eliminates
an error in the continuity equation due to time and space

c� 0000 RAS, MNRAS 000, 000–000

Higher order SPH 3

Vi =

N⇧

j

mj

⇤j
g�1
ij Sij (17)

with:

Sij =
1
x
⌅W ij

⌅x

�
x2
ij xijyij xijzij

yijxij y2
ij yijzij

zijxij zijyij z2ij

⇥
(18)

where ⇤x
i = h⇤i; xij = (xij , yij , zij); x = |xij |; and gij =

⌅j
⌅i

⇤i
⇤j
.

The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h�1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.

2.2 Higher order SPH: OSPH0

In this section, we derive the equations of motion for our new
higher order SPH (OSPH0). Our philosophy is to minimise
the truncation errors in the equations of motion, rather than
the usual strategy where we demand that conservation laws
are exactly held. We call this new strategy convergent.

Consider the following set of equations:

⇤i =

N⇧

j

mjWij (19)

dvi

dt
=

N⇧

j

mj

⇤i⇤̂j
(Pj � Pi)⇤iW ij (20)

Ai = const. (21)

which are closed by the equation of state:

Pi =

⇤
N⇧

j

mjA
1
�
j Wij

⌅⇥

(22)

where ⇤̂i is as in equation 8 with ⇥ = 1/A
1
� . Taylor ex-

panding as in §2.1 and RHA10, it is straightforward to show
that this system of equations is now accurate to O(0) by
construction.

EXTRA equations here just for talks

dvi

dt
=

N⇧

j

mj

⇤i⇤j
(Pj � Pi)⇤iW ij +

Pi

hi⇤i
E0 (23)

E0 = 2

N⇧

j

mj

⇤j
⇤x

i W ij ⇥ 2

⌃

V

dV⇤xW (24)

qi =
⇧

j

ajx
j
ij (25)

qi = a0,i + a1,ixij + a2,ix
2
ij (26)

⇤
N⇧

j

mjWij

�
1 xij x2

ij

xij x2
ij x3

ij

x2
ij x3

ij x4
ij

⇥⌅�
a0,i

a1,i

a2,i

⇥
=

N⇧

j

mjWij

�
qj

qjxij

qjx
2
ij

⇥
(27)

�loc,i =
hi|a2,i|

hi|a2,i|+ |a1,i|+ |a0,i|/hi
(28)

�i = �loc,i ;�i < �loc,i

�̇i =
�loc,i��i

hi/vsig,i
;�i > �loc,i (29)

qdiss,i =

N⇧

j

mj

⇤ij
�ijvpsig,ij(qi � qj)r̂ij ·⇤iWij (30)

vpsig,ij =

⌥
|Pi � Pj |

⇤ij
(31)

P̃i = Ãi⇤
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Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di⇥erences
being that ⇤i⇤̂i in the denominator becomes ⇤2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e⇥ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.
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Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di⇥erences
being that ⇤i⇤̂i in the denominator becomes ⇤2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e⇥ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.
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amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di⇥erences
being that ⇤i⇤̂i in the denominator becomes ⇤2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e⇥ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.
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Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di⇥erences
being that ⇤i⇤̂i in the denominator becomes ⇤2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e⇥ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.

2.2.1 The continuity equation in OSPH0

Notice that, unlike OSPH (RHA10), we now use the stan-
dard SPH density estimator (equation 19). This eliminates
an error in the continuity equation due to time and space
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The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h�1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.

2.2 Higher order SPH: OSPH0

In this section, we derive the equations of motion for our new
higher order SPH (OSPH0). Our philosophy is to minimise
the truncation errors in the equations of motion, rather than
the usual strategy where we demand that conservation laws
are exactly held. We call this new strategy convergent.

Consider the following set of equations:
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where ⇤̂i is as in equation 8 with ⇥ = 1/A
1
� . Taylor ex-

panding as in §2.1 and RHA10, it is straightforward to show
that this system of equations is now accurate to O(0) by
construction.
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Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di⇥erences
being that ⇤i⇤̂i in the denominator becomes ⇤2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e⇥ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.
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The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h�1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.

2.2 Higher order SPH: OSPH0

In this section, we derive the equations of motion for our new
higher order SPH (OSPH0). Our philosophy is to minimise
the truncation errors in the equations of motion, rather than
the usual strategy where we demand that conservation laws
are exactly held. We call this new strategy convergent.
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Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di⇥erences
being that ⇤i⇤̂i in the denominator becomes ⇤2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e⇥ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.

2.2.1 The continuity equation in OSPH0

Notice that, unlike OSPH (RHA10), we now use the stan-
dard SPH density estimator (equation 19). This eliminates
an error in the continuity equation due to time and space
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The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h�1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.

2.2 Higher order SPH: OSPH0

In this section, we derive the equations of motion for our new
higher order SPH (OSPH0). Our philosophy is to minimise
the truncation errors in the equations of motion, rather than
the usual strategy where we demand that conservation laws
are exactly held. We call this new strategy convergent.

Consider the following set of equations:
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Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di⇥erences
being that ⇤i⇤̂i in the denominator becomes ⇤2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e⇥ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.
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Figure 9. Each frame shows a density slice through the cloud center at times t = 0.5, 1.0 and 1.5 τKH with densities varying from low
(blue) to high (red). The grid (Enzo) simulation (left) shows instabilities developing on the surface causing the cloud to fragment, while
these features are absent in the SPH (Gasoline) simulation (middle and right).

Figure 10. Evolution of the cloud with ‘analytic’ initial conditions using the CHARM code. Each frame shows a density slice through
the cloud center at times t = 0.24, 0.9, 1.7 and 2.5 τKH with densities varying from low (red) to high (blue).

hand side can create or diffuse vorticity. The first term is the
baroclinic term which is non vanishing if we have non-aligned
pressure and density gradients. This is the case in oblique
shocks like in the bow shock of our cloud simulation. The
second term is responsible for diffusing vorticity in space i.e.
taking local vorticity and spreading it into the general flow.
This means that as soon as we have viscosity, we will dampen
vorticity. Especially important is the vorticity generated in
the post shock flow, which should act to destabilize the cloud
together with the surface instabilities.

A study on how AV dampens small scale vorticity was
made by Dolag et al. (2005). By using a low viscosity formu-
lation of SPH they find higher levels of turbulent gas motions
in the ICM and noted that shocked clouds tend to be unsta-
ble at earlier times. However, by looking at their Figure 3
we note that the overall difference in the cloud evolution is
small. As we will see in the tests carried out below, lowering
the AV does not necessarily lead to improved results.

In order to understand the effect of artificial viscosity
in our cloud-wind test we have performed three simulations
with modified setting of the viscosity coefficients. These are
Gas 10mAV1, Gas 10mAV2 and Gas 10AV3, see Table 1
for viscosity values. A simulation using the Balsara switch
but with the standard (α = 1.0, β = 2.0) was also per-

formed. Fig. 11 shows the outcome of the simulations at
t = 0.25, 0.75, 1.5 and 2.25 τKH. We can directly see the im-
pact these terms have on the stability of the simulation.
The standard α = 1.0, β = 2.0 is the most stable one, most
probably due to the unphysical use of the α bulk viscos-
ity. The use of α = 0 and β = 2.0 or the Balsara switch
renders very similar visual results. This is because the Bal-
sara switch turns of viscosity where |∇·v|/(|∇·v+|∇×v|) is
significant, which is the case for shearing flows like on the
surface of the cloud. Note that this is a very noisy quantity
when measured using only 32 neighbours. By further lower-
ing the shock capturing β viscosity we make the cloud even
more unstable but it is not clear how physical this solution
is. The shock front gets more blurred and we see strong post
shock ringing effects. The reason for the increased instabil-
ity in the α = 0, β = 0.5, and α = 0, β = 0.1 case is most
probably due to high speed particles traveling through the
poorly captured shock region and transferring momentum
inside the cloud, perturbing it in an unphysical way.

We have performed simulations similar in spirit to the
SPH ones using Enzo-ZEUS. There is formally no need for
linear viscosity using this method except for hyper-sonic
flows, but it is interesting to study the effect of lowering
QAV in the same way as β. Fig 12 shows density slices from
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1. The ‘E0’ error 

2. Multivalued pressures

3. Overly viscous

4. Noisy



1. The ‘E0 error’ | Taylor expanding the momentum equation

Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

Resolving mixing in SPH 3

3 OPTIMISED SMOOTHED PARTICLE
HYDRODYNAMICS

In general, we have some freedom in how we discretise the
Euler equations (equations 4-6) to obtain the equations of
motion for SPH. The gradients in the Euler equations can be
expanded to include a new free function for each equation:
φρ, φv and φu:
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= φρ

[
v ·∇

(
ρ
φρ
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)]
(13)

dv
dt

= −
[

Pφv

ρ2
∇

(
ρ
φv

)
+

1
φv

∇
(

Pφv

ρ

)]
(14)

du
dt

=
P
ρ2

φu

[
v ·∇

(
ρ
φu

)
−∇ ·
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In the continuum form, above, φρ, φv and φu cancel. But
in the discrete SPH form, they remain giving a useful addi-
tional freedom (Price 2005):
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where Hij =
[
Hij(|rij |, hi) + Hij(|rij |, hj)

]
/2, Kij and Lij

are symmetrised smoothing kernels – one for each Euler
equation. Standard SPH (SPH from here on) is a special
case of the above with φρ = φv = φu = φ = 1 and
Hijrij = Kijrij = Lijrij = ∇iW ij .

Equation 16 casts the continuity equation in differential
form. This is problematic since, in this case, the particles no
longer represent the fluid exactly. Instead they represent a
moving mesh on which the Euler equations are solved. This
leads to the danger that high density regions will contain
few particles leading to large errors (Maron & Howes 2003).
For this reason, we use instead a generalised integral form
for the continuity equation:

ρi =

N∑

j

mj
φρ

i

φρ
j

W ij (19)

which, taking the time derivative, gives:

dρi

dt
=

N∑

j

mj
φρ

i

φρ
j

vij ·∇W ij + ε (20)

where:

ε =

N∑

j

mj

(
φ̇ρ

i

φρ
i

−
φ̇ρ

j

φρ
j

)
φρ

i

φρ
j

W ij (21)

and φ̇ = dφ
dt .

This reduces to the continuity equation (equation 16)
under the kernel constraint: Hijrij = ∇W ij , and for ε = 0.
The latter can be satisfied by construction if φρ

i = φρ
j (as

is the case for SPH), or if φ̇ρ = 0. However, ε → 0 also

in the continuum limit (N → ∞, h → 0), and so ε will
vanish with increasing resolution. For this reason, equation
19 gives a valid approximation to the continuity equation for
any choice of φρ, with ε simply contributing an additional
error term.

A final freedom in the equations motion for SPH comes
from the energy equation. Equation 18 is the standard en-
ergy form of SPH, but there is also an entropy form (Good-
man & Hernquist 1991; Springel & Hernquist 2002). Instead
of the internal energy, u, we evolve a function A(s) – the en-
tropy function – that is a monotonic function of the entropy
s defined by the equation of state:

Pi = Ai(s)ρ
γ
i (22)

Away from shocks and in the absence of cooling, A is a
constant of the motion. Thus, taking the time derivative of
equation 22 and substituting for equation 12, we recover:

dui

dt
=

Pi

ρ2
i

dρi

dt
(23)

by construction. Schemes that obey equation 23 are called
thermodynamically consistent.

In practice, we find – for the tests presented in this pa-
per – that the energy and entropy forms of SPH give near-
identical results, provided that equation 23 is satisfied. How-
ever, if equation 23 is not obeyed, this leads to disastrous
numerical instabilities. We use the thermodynamically con-
sistent energy form throughout this paper. This gives us the
constraints: φu = φρ and Lijrij = Hijrij = ∇W ij , which

we apply from here on. We also use Kijrij = ∇W ij , as in
standard SPH. This is not a formal requirement, but ensures
that coherence is recovered in the limit of constant density.

3.1 Errors

We can calculate the order of error of equations 19, 17 and
18 if we assume that the pressure and velocity of the flow
are smooth. In this case, we can Taylor expand rj about ri

to give:

Pj % Pi + hxij ·∇Pi + O(h2) (24)

and

vj % vi + h(xij ·∇)vi + O(h2) (25)

where xij = rij/h, and we have assumed a constant smooth-
ing length h.

We will focus on equations 19 and 17, since equations 18
and 19 share similar error properties. Substituting equations
24 and 25 in to equations 19 and 17 gives:

dρi

dt
% −ρi

(
Mρ

i
∇

)
· vi + ε + O(h) (26)

and

dvi

dt
% − Pi

hρi

N∑

j

mj

ρj

[
gij + g−1

ij

]
∇xW ij

−
Mv

i
∇Pi

ρi
+ O(h) (27)

where ∇x = h∇, and the matrices Mρ,v

i
are given by:
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Vi =

N⇧

j

mj

⇤j
g�1
ij Sij (17)

with:

Sij =
1
x
⌅W ij

⌅x

�
x2
ij xijyij xijzij

yijxij y2
ij yijzij

zijxij zijyij z2ij

⇥
(18)

where ⇤x
i = h⇤i; xij = (xij , yij , zij); x = |xij |; and gij =

⌅j
⌅i

⇤i
⇤j
.

The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h�1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.

2.2 Higher order SPH: OSPH0

In this section, we derive the equations of motion for our new
higher order SPH (OSPH0). Our philosophy is to minimise
the truncation errors in the equations of motion, rather than
the usual strategy where we demand that conservation laws
are exactly held. We call this new strategy convergent.

Consider the following set of equations:

⇤i =

N⇧

j

mjWij (19)

dvi

dt
=

N⇧

j

mj

⇤i⇤̂j
(Pj � Pi)⇤iW ij (20)

Ai = const. (21)

which are closed by the equation of state:

Pi =

⇤
N⇧

j

mjA
1
�
j Wij

⌅⇥

(22)

where ⇤̂i is as in equation 8 with ⇥ = 1/A
1
� . Taylor ex-

panding as in §2.1 and RHA10, it is straightforward to show
that this system of equations is now accurate to O(0) by
construction.

EXTRA equations here just for talks

dvi

dt
=

N⇧

j

mj

⇤i⇤j
(Pj � Pi)⇤iW ij +

Pi

hi⇤i
E0 (23)

E0 = 2

N⇧

j

mj

⇤j
⇤x

i W ij ⇥ 2

⌃

V

dV⇤xW (24)

qi =
⇧

j

ajx
j
ij (25)

qi = a0,i + a1,ixij + a2,ix
2
ij (26)

⇤
N⇧

j

mjWij

�
1 xij x2

ij

xij x2
ij x3

ij

x2
ij x3

ij x4
ij

⇥⌅�
a0,i

a1,i

a2,i

⇥
=

N⇧

j

mjWij

�
qj

qjxij

qjx
2
ij

⇥
(27)

�loc,i =
hi|a2,i|

hi|a2,i|+ |a1,i|+ |a0,i|/hi
(28)

�i = �loc,i ;�i < �loc,i

�̇i =
�loc,i��i

hi/vsig,i
;�i > �loc,i (29)

qdiss,i =

N⇧

j

mj

⇤ij
�ijvpsig,ij(qi � qj)r̂ij ·⇤iWij (30)

vpsig,ij =

⌥
|Pi � Pj |

⇤ij
(31)

P̃i = Ãi⇤
⇥
i (32)

mava = (ma ��m)vb (33)

⇤i =

N⇧

j

mjWij(|rij |, hi) (34)

dvi

dt
=

N⇧

j

mj

⇤i⇤j
(Pi + Pj)⇤iW ij (35)

Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di⇥erences
being that ⇤i⇤̂i in the denominator becomes ⇤2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e⇥ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.
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where ⇤x
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The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h�1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.

2.2 Higher order SPH: OSPH0

In this section, we derive the equations of motion for our new
higher order SPH (OSPH0). Our philosophy is to minimise
the truncation errors in the equations of motion, rather than
the usual strategy where we demand that conservation laws
are exactly held. We call this new strategy convergent.

Consider the following set of equations:

⇤i =

N⇧

j

mjWij (19)

dvi

dt
=

N⇧

j

mj

⇤i⇤̂j
(Pj � Pi)⇤iW ij (20)

Ai = const. (21)

which are closed by the equation of state:

Pi =

⇤
N⇧

j

mjA
1
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j Wij

⌅⇥

(22)

where ⇤̂i is as in equation 8 with ⇥ = 1/A
1
� . Taylor ex-

panding as in §2.1 and RHA10, it is straightforward to show
that this system of equations is now accurate to O(0) by
construction.
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dvi

dt
=

N⇧
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mj

⇤i⇤j
(Pj � Pi)⇤iW ij +

Pi
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E0 (23)

E0 = 2
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dV⇤xW (24)
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(27)

�loc,i =
hi|a2,i|

hi|a2,i|+ |a1,i|+ |a0,i|/hi
(28)

�i = �loc,i ;�i < �loc,i

�̇i =
�loc,i��i

hi/vsig,i
;�i > �loc,i (29)

qdiss,i =

N⇧
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mj

⇤ij
�ijvpsig,ij(qi � qj)r̂ij ·⇤iWij (30)

vpsig,ij =

⌥
|Pi � Pj |

⇤ij
(31)

P̃i = Ãi⇤
⇥
i (32)

mava = (ma ��m)vb (33)

⇤i =

N⇧

j

mjWij(|rij |, hi) (34)

dvi

dt
=

N⇧

j

mj

⇤i⇤j
(Pi + Pj)⇤iW ij (35)

Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di⇥erences
being that ⇤i⇤̂i in the denominator becomes ⇤2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e⇥ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.
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The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h�1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.

2.2 Higher order SPH: OSPH0

In this section, we derive the equations of motion for our new
higher order SPH (OSPH0). Our philosophy is to minimise
the truncation errors in the equations of motion, rather than
the usual strategy where we demand that conservation laws
are exactly held. We call this new strategy convergent.

Consider the following set of equations:
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dvi
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=
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⇤i⇤̂j
(Pj � Pi)⇤iW ij (20)

Ai = const. (21)

which are closed by the equation of state:
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where ⇤̂i is as in equation 8 with ⇥ = 1/A
1
� . Taylor ex-

panding as in §2.1 and RHA10, it is straightforward to show
that this system of equations is now accurate to O(0) by
construction.
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(Pi + Pj)⇤iW ij (35)

Pi = Ai⇤
⇥
i ;Ai = const. (36)

dvi

dt
⇥ � Pi

hi⇤i
2

N⇧

j

mj

⇤j
⇤x

i W ij �
Mi⇤iPi

⇤i
+O(h) (37)

Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di⇥erences
being that ⇤i⇤̂i in the denominator becomes ⇤2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e⇥ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.
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The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h�1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.

2.2 Higher order SPH: OSPH0

In this section, we derive the equations of motion for our new
higher order SPH (OSPH0). Our philosophy is to minimise
the truncation errors in the equations of motion, rather than
the usual strategy where we demand that conservation laws
are exactly held. We call this new strategy convergent.

Consider the following set of equations:
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where ⇥̂i is as in equation 8 with � = 1/A
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panding as in §2.1 and RHA10, it is straightforward to show
that this system of equations is now accurate to O(0) by
construction.

EXTRA equations here just for talks

dvi

dt
=

N⇧

j

mj

⇥i⇥j
(Pj � Pi)⇤iW ij +

Pi

hi⇥i
E0 (23)

E0 = 2

N⇧

j

mj

⇥j
⇤x

i W ij ⇥ 2

⌃

V

dV⇤xW (24)

Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only di�erences
being that ⇥i⇥̂i in the denominator becomes ⇥2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The e�ect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.

2.2.1 The continuity equation in OSPH0

Notice that, unlike OSPH (RHA10), we now use the stan-
dard SPH density estimator (equation 19). This eliminates
an error in the continuity equation due to time and space
derivatives of the internal energy that appear if we use in-

stead equation 8 with � = 1/A
1
� . However, we do use this

‘RT’ density estimate – ⇥̂i – inside the momentum equation
sum. The reason for this is that, as we showed in RHA10,
⇥̂i gives a much better local volume estimate than ⇥i at flow
boundaries. This highlights also the fact that ⇥i in equa-
tion 20 is the physical flow density, but ⇥̂j is not. Rather,
we should think of mj/⇥̂j as a local volume estimate of the
flow. We demonstrate in §4.2 that this change is important
for getting the Sedov blast wave test right.

2.2.2 Momentum conservation in OSPH0

Notice that equation 20 is symmetric such that v̇ij = v̇ji,
which at first sight appears to be a disaster. Now the par-
ticles obey the exact opposite of Newton’s third law and
momentum conservation seems to be a problem.

In fact, there is no problem with momentum conser-
vation if we use equation 20. This is because momentum
conservation is not the same thing as pairwise particle mo-
mentum conservation. The latter ensures the former by con-
struction, but the opposite is not true. The above momen-
tum equation will conserve momentum up to the truncation
error (at least order O(0)). In fact, it is straightforward to
show that pairwise particle momentum conservation is prob-
lematic at flow boundaries. To understand why this is, con-
sider the following thought experiment. Imagine we arrange
42 particles on a 2D lattice for solving a fluid problem in
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1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling

Resolving mixing in SPH 1523

Figure 4. A KHI (density ratio Rρ = 2) at τKH = 1 modelled with SPH, TSPH and OSPH using CS, CT and HOCT4 kernels (see equations 44–46). From left
to right the plots show, in a slice of width dx = 1 about the z-axis, density contours, a zoom-in on the particle distribution around one of the rolls, the magnitude
of the |E0| error (see equation 28) as a function of y and the pressure in a slice of width dx = 1 about the x-axis, as a function of y. The circles on the density
contour plots mark the size of the smoothing kernel, h.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 405, 1513–1530
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1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling

Resolving mixing in SPH 1525

Figure 6. Long-term evolution of the KHI in TSPH and OSPH versus the Eulerian code RAMSES. From left to right, the panels show density contours in a slice
of width dx = 1 about the z-axis at times τKH = 1, 2 and 3.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 405, 1513–1530
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then the dissipation will only switch on once the flow is con-
verging, not before. To detect flow convergence in advance,
we use instead the spatial derivative of ⌅ · vi for the mag-
nitude of our dissipation parameter �loc,i. This leads to the
following dimensionless dissipation switch:

�loc,i =

⇧
h2
i |⌅(⌅·vi)|

h2
i
|⌅(⌅·vi)|+hi|⌅·vi|+nscs

�max ⌅ · vi < 0

0 otherwise
(21)

where �loc,i describes the amount of dissipation for a given
particle in the range [0,�max = 1]; and ns = 0.05 is a ‘noise’
parameter that determines the magnitude of velocity fluc-
tuations that trigger the switch. Equation 21 turns on dissi-
pation if ⌅ · vi < 0 (convergent flow) and if the magnitude
of the spatial derivative of ⌅ ·vi is large as compared to the
local divergence (i.e. if the flow is going to converge).

In principle, the maximum dissipation parameter �max

can be di�erent for each fluid quantity. Our default in this
paper is to use �max = 1 for all fluid variables. We investi-
gate the sensitivity of SPHS to �max in Appendix F.

As in Cullen & Dehnen (2010), we set the local dissipa-
tion to the above value instantaneously if �i < �loc,i:

�i = �loc,i �i < �loc,i (22)

otherwise, �i smoothly decays back to zero:

�̇i = (�loc,i � �i)/⇥i �min < �loc,i < �i

�̇i = (�min � �i)/⇥i �min > �loc,i
(23)

where ⇥i = hi/vmax,i is the timescale for the decay; and
vmax,i is the maximum signal velocity (Springel 2005):

vmax,i = max
j

[vsig,ij] (24)

with

vsig,ij = ci + cj � 3wij (25)

where wij =
vij ·rij
|rij |

, and ci is the local sound speed at par-

ticle i.
The parameter �min = 0.2 ensures that the dissipation

parameter decays all the way back to zero once particles are
no longer converging.

4.2 A higher order gradient estimator

Our dissipation switch (equation 21) requires a good esti-
mate of both the first and second derivatives of the veloc-
ity field. A noisy estimator will cause the limiter to trig-
ger unnecessarily, leading to an overly di�usive method7. To
achieve good quality gradients, we fit a second order poly-
nomial to each of the fluid variables as in Maron & Howes
(2003). The first and second derivatives then follow from
the coe⌅cients of the polynomial fit. The full 3D algorithm
is given in Appendix C. Here we present a 1D version to
illustrate the idea.

7 Indeed, Rosswog (2010) recently advanced the idea of using
higher order gradients for their dissipation switch. They used a
first order accurate gradient of the pressure, whereas we use the
gradient of the velocity divergence (which is a second derivative
of the velocity field).

We assume that a fluid variable, qi, can be locally rep-
resented by a smooth second order polynomial:

qi = a0,i + a1,ixij + a2,ix
2
ij +O(h3) (26)

where xij = rij/hi.
To determine the coe⌅cients an,i, we then consider the

matrix equation Ma = q:

⇤
N⌃

j

mjWij

�
1 xij x2

ij

xij x2
ij x3

ij

x2
ij x3

ij x4
ij

⇥⌅�
a0,i

a1,i

a2,i

⇥
=

N⌃

j

mjWij

�
qj

qjxij

qjx
2
ij

⇥
(27)

(28)

The matrix M and the vector q contain weighted moments
that can be calculated in the usual way by summing over
each particle’s nearest neighbours. The vector a is then cal-
culated by solving for the inverse of M. The particle gra-
dients at the position of the particle (xij = 0) then follow
from q⇥i(0) = a1,i and q⇥⇥i (0) = 2a2,i.

The above straightforwardly generalises to 3D and to
vector fluid variables. For scalar variables in 3D we must
solve a 10 ⇤ 10 matrix inverse to obtain a 10 coe⌅cient fit
(see Appendix C):

qij = a0,i + a1,ixij + a2,iyij + a3,izij + a4,ix
2
ij + a5,iy

2
ij +

a6,iz
2
ij + a7,ixijyij + a8,ixijzij + a9,iyijzij +

O(h3) (29)

where xij = rij/hi = [xij , yij , zij ].
Note that Maron & Howes (2003) use these higher or-

der gradients to actually move the fluid. This makes the
method non-conservative, leading to problems in strong
shocks. In SPHS, we use these gradients instead to conser-
vatively maintain fluid smoothness.

Our dissipation switch manifestly satisfies our criteria
(i) and (ii) outlined above. It detects flow convergence in
advance, and it is accurate since it is based on a second
order accurate expansion of the velocity field.

Note that a second order polynomial is the lowest order
that we could fit in order to obtain a second derivative. In
principle, we could fit a third or fourth order polynomial thus
further increasing the accuracy of the switch. However, this
comes at quite significant cost. At third order, the size of the
moment matrix increases from 10⇤10 to 20⇤20 and requires
an additional 40 sums over the particles to be calculated and
stored. Secondly, for the higher order moments to actually
help, the neighbour number should be increased. Otherwise
noise in the third moments could make the higher order
gradient estimator poorer than the second order estimate.
For these reasons, we stick to the second order scheme in
this paper.

4.3 The dissipation terms

4.3.1 Artificial viscosity

We start with the familiar artificial viscosity. Here, we use
the form as in Monaghan (1997) and Springel (2005):
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we use instead the spatial derivative of ⌅ · vi for the mag-
nitude of our dissipation parameter �loc,i. This leads to the
following dimensionless dissipation switch:
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where �loc,i describes the amount of dissipation for a given
particle in the range [0,�max = 1]; and ns = 0.05 is a ‘noise’
parameter that determines the magnitude of velocity fluc-
tuations that trigger the switch. Equation 21 turns on dissi-
pation if ⌅ · vi < 0 (convergent flow) and if the magnitude
of the spatial derivative of ⌅ ·vi is large as compared to the
local divergence (i.e. if the flow is going to converge).
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can be di�erent for each fluid quantity. Our default in this
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with
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, and ci is the local sound speed at par-
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The parameter �min = 0.2 ensures that the dissipation

parameter decays all the way back to zero once particles are
no longer converging.

4.2 A higher order gradient estimator

Our dissipation switch (equation 21) requires a good esti-
mate of both the first and second derivatives of the veloc-
ity field. A noisy estimator will cause the limiter to trig-
ger unnecessarily, leading to an overly di�usive method7. To
achieve good quality gradients, we fit a second order poly-
nomial to each of the fluid variables as in Maron & Howes
(2003). The first and second derivatives then follow from
the coe⌅cients of the polynomial fit. The full 3D algorithm
is given in Appendix C. Here we present a 1D version to
illustrate the idea.

7 Indeed, Rosswog (2010) recently advanced the idea of using
higher order gradients for their dissipation switch. They used a
first order accurate gradient of the pressure, whereas we use the
gradient of the velocity divergence (which is a second derivative
of the velocity field).

We assume that a fluid variable, qi, can be locally rep-
resented by a smooth second order polynomial:

qi = a0,i + a1,ixij + a2,ix
2
ij +O(h3) (26)
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The matrix M and the vector q contain weighted moments
that can be calculated in the usual way by summing over
each particle’s nearest neighbours. The vector a is then cal-
culated by solving for the inverse of M. The particle gra-
dients at the position of the particle (xij = 0) then follow
from q⇥i(0) = a1,i and q⇥⇥i (0) = 2a2,i.

The above straightforwardly generalises to 3D and to
vector fluid variables. For scalar variables in 3D we must
solve a 10 ⇤ 10 matrix inverse to obtain a 10 coe⌅cient fit
(see Appendix C):
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ij + a7,ixijyij + a8,ixijzij + a9,iyijzij +

O(h3) (29)

where xij = rij/hi = [xij , yij , zij ].
Note that Maron & Howes (2003) use these higher or-

der gradients to actually move the fluid. This makes the
method non-conservative, leading to problems in strong
shocks. In SPHS, we use these gradients instead to conser-
vatively maintain fluid smoothness.

Our dissipation switch manifestly satisfies our criteria
(i) and (ii) outlined above. It detects flow convergence in
advance, and it is accurate since it is based on a second
order accurate expansion of the velocity field.

Note that a second order polynomial is the lowest order
that we could fit in order to obtain a second derivative. In
principle, we could fit a third or fourth order polynomial thus
further increasing the accuracy of the switch. However, this
comes at quite significant cost. At third order, the size of the
moment matrix increases from 10⇤10 to 20⇤20 and requires
an additional 40 sums over the particles to be calculated and
stored. Secondly, for the higher order moments to actually
help, the neighbour number should be increased. Otherwise
noise in the third moments could make the higher order
gradient estimator poorer than the second order estimate.
For these reasons, we stick to the second order scheme in
this paper.

4.3 The dissipation terms

4.3.1 Artificial viscosity

We start with the familiar artificial viscosity. Here, we use
the form as in Monaghan (1997) and Springel (2005):
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SPHS | Putting it all together

1. ‘E0’ error reduced using 442 neighbours and stable 
higher order HOCT kernel. Also much lower noise (4).

2. Multivalued pressures eliminated using advance warning 
high order switch and conservative dissipation. Lower 
viscosity away from shocks (3); multimass particles now 
possible.

3. Timestep limiter [Saitoh & Makino 2009] => strong 
shocks correctly tracked.

4. Implementations in GADGET2 & 3. 
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Figure 3. Projected surface density plots of the central disk that forms in the SPH-96-res1 (left) and SPHS-96-res1 (right) runs, at
t = 2Gyrs. Both disks are of a similar size, although the stochastic mode by which they have grown is very dependant on the random
orientations of the supernovae feedback, and they are therefore at different orientations despite the same initial velocity field for the
gaseous halo. The SPH disk is surrounded by multiple clumps that formed in the halo whereas the clumps present in the SPHS case
have formed from the disk itself.

7 & 8, in which the phase diagrams are plotted along with
the projected surface density and projected temperature for
the isolated phase regions.

3.2.1 Isothermal contraction phase

As the gas cools out of hydrostatic equilibrium, it experi-
ences a variable cooling rate that is set by the combined
cooling curve of Katz et al. (1996) and Mashchenko et al.
(2008) used in our simulations. At T = 104 K (the switchover
between the two curves) the cooling becomes inefficient, and
so gas tends to ‘pile up’ at around this temperature. We have
isolated a region on the phase diagram (2nd from top) that
corresponds to gas that has cooled to this temperature and
is condensing, moving nearly isothermally across the marked
region to higher densities and eventually onto the polytrope.
This we refer to as an ‘isothermal contraction phase’, and
has particular relevance to the many spurious clumps that
are seen in the SPH runs, as it marks the region on the
phase diagram that they inhabit. Although still present in
the higher resolution SPHS runs, this region is significantly
less occupied, and does not extend as far to low densities as
in the SPH case.

3.2.2 Polytrope phase

As mentioned in Sections 2.4 & 2.5, the diagonal line shown
on the phase diagram corresponding to a polytropic EQS

with an adiabatic index of 4/3 functions as a dynamic pres-
sure floor, ensuring that the Jeans mass is always resolved in
the gas. The polytrope ‘fills in’ from gas that either cools di-
rectly onto it or from gas that reaches it through the isother-
mal contraction phase discussed above. Once on the poly-
trope, the gas can move along it to higher densities (and
higher temperatures as per the EQS) and of course can move
off it either by an increase in temperature for a given den-
sity, or by a decrease in density for a given temperature. Gas
can also leave the polytrope by being converted into stars,
which is allowed to occur beyond the fixed threshold of 102

atoms cm−3, denoted by the green dotted line. The presence
of gas on the polytrope past this fixed threshold is therefore
transitory – it fills in and subsequently disappears as stars
form.

3.2.3 Hot bubble phase

The filling in of the polytrope beyond the fixed density
threshold for SF is often followed by an ejection event that
pushes gas into the ‘overpressurised bubble’ section of the
phase diagram. Within this region there we can identify both
the ρ−T trend for a given bubble, as well as the evolution of
this trend with time, through analytic arguments. To start
with, the similarity solution for a Sedov-Taylor blast wave
due to an energy deposition E in a uniform medium (Sedov,
1959) is given by:

r(t) ∝

(

Et2

ρISM

)

(19)
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Figure 4. Plots of the kinematic ‘disk/bulge’ ratio for the inner 8 kpc in the stars (left) and the gas (right) together with the enclosed
mass in stars out to 100 kpc (middle) for the SPH-96-res1 (black) and SPHS-96-res1 (blue) simulations. The SPHS run has a more
disk-like morphology inside the central 8 kpc, with the Jz/Jc ! 1 signal (a ‘disk’) being a factor of ≈ 4 higher than SPH in the stars and
a factor of ≈ 5 higher than SPH in the gas. The SPH run shows a stronger peak at lower angular momentum with a Jz/Jc ! 0 signal
(a ‘bulge’) that also corresponds to more randomised orbits than in SPHS.

where ρISM is the average (constant) density of the sur-
rounding medium. We can define an overdensity parameter
δs ≡ ρs/ρISM for the shocked gas, which under the assump-
tion of a strong adiabatic shock, is a constant – given by
δs " 4. The shock velocity, vs = dR/dt is therefore:

vs ∝
2
5
E1/5(4ρs)

1/5t−3/5 =
2r
5t

(20)

which we can write as:

vs ∝ E1/2r−3/2ρ−1/2
s (21)

The post-shock temperature for an adiabatic shock with ve-
locity vs is:

Ts ∝
µmpv

2
s

kB
(22)

which gives us:

Ts ∝ Er−3ρ−1
s (23)

The trend T ∝ ρ−1 is shown on the top phase plot (dotted
magenta line) in Figures 7 & 8. The shape of this feature
remains constant but evolves along the phase diagram as
the bubbles expand. Such evolution can be described ana-
lytically by a post Sedov-Taylor solution for adiabatically-
expanding hot gas. If we assume that the expansion is suf-
ficiently fast that radiative cooling can be neglected, the
equation of state is P ∝ ργ , with γ = 5/3. We can write this
in terms of the sound speed by noting that:

c2s =
γP
ρ

(24)
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Figure 9. Plots of density (top), pressure (middle) and entropy (bottom) for the most gas-rich overdense clump in the SPH-96-res1 run,
at t = 0.63 Gyr. The gas that formed the clump was identified and tracked back earlier in the simulation to before it formed. On the
left-hand side are the plots showing the evolution of this particular clump with the SPH method, while on the right-hand side the plots
show the evolution of the clump with the SPHS method (although starting from the same SPH-96-res1 snapshot from which the clump
was taken – at t = 0.4Gyr). Each property (ρ, P , A) is plotted in the centre of mass frame of the clump gas at a time in its evolution
where a density peak that occurred just previously has been smoothed out. This density peak had a corresponding entropy dip at the
same location. When evolved with SPHS, the smoothing of the density peak coincides with a diffusion of the entropy, removing the dip
and allowing the pressures to remain smooth; however, when exactly the same initial condition is evolved with SPH the entropy dip
remains (red circle), driving an equivalent dip in the pressures (magenta circle). This central pressure dip drives the contraction of the
gas and the subsequent formation of the clump. For the full evolution and a clear picture of how this occurs the reader is directed to the
corresponding movie at http://www.phys.ethz.ch/~ahobbs/movies.html.
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Figure 9. Plots of density (top), pressure (middle) and entropy (bottom) for the most gas-rich overdense clump in the SPH-96-res1 run,
at t = 0.63 Gyr. The gas that formed the clump was identified and tracked back earlier in the simulation to before it formed. On the
left-hand side are the plots showing the evolution of this particular clump with the SPH method, while on the right-hand side the plots
show the evolution of the clump with the SPHS method (although starting from the same SPH-96-res1 snapshot from which the clump
was taken – at t = 0.4Gyr). Each property (ρ, P , A) is plotted in the centre of mass frame of the clump gas at a time in its evolution
where a density peak that occurred just previously has been smoothed out. This density peak had a corresponding entropy dip at the
same location. When evolved with SPHS, the smoothing of the density peak coincides with a diffusion of the entropy, removing the dip
and allowing the pressures to remain smooth; however, when exactly the same initial condition is evolved with SPH the entropy dip
remains (red circle), driving an equivalent dip in the pressures (magenta circle). This central pressure dip drives the contraction of the
gas and the subsequent formation of the clump. For the full evolution and a clear picture of how this occurs the reader is directed to the
corresponding movie at http://www.phys.ethz.ch/~ahobbs/movies.html.
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• ‘E0’ error reduced using 442 neighbours and stable 
higher order HOCT kernel. Much lower noise.

• Multivalued pressures eliminated using advance warning 
high order switch and conservative dissipation. Lower 
viscosity away from shocks; multimass particles now 
possible.

• Timestep limiter => strong shocks correctly tracked.

• Good performance and convergence to >1% accuracy 
on a wide range of test problems. 

• Santa Barbara test => entropy profile core

• Cooling halos => no SPH blobs 


