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Overview

* Image processing
— Fourier transforms
— Wavelet transforms & multi-scale processing
— Compression
— Deconvolution
— Etc. ...
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Fourier Transforms

e Key fact: Fourier transforms make
convolutions fast
FIX*Y)=F(X) x F(Y)
Fast FT (FFT) converts O(N?) operation to

O(N log N)

 FT's occur naturally in radio interferometry
(which measures FT of image)

— Look to radio astronomy for clever adaptations,
e.g., FFT for unevenly spaced data
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Fourier Transforms

e FTs are complex-valued with amplitude and
phase

— Perhaps surprising: phase 1s more important
than amplitude in capturing image information
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Phase versus amplitude?




Fourier Transforms

 FTs are complex-valued with amplitude and
phase

 FT coeftficients are global

— Changing a single coetficient changes every
pixel in the image
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Local changes, global effects

Changed single FT coetficient




Local changes, global effects

Changed block (0.1%) of coefficients




Fourier Transforms

 FTs are complex-valued with amplitude and
phase

 FT coeftficients are global

— Essential for convolution theorem, but
awkward when using FTs for analysis
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Wavelet Transtorms

* Wavelet transforms decompose an image
into a sum of localized functions with
various spatial scales

— Fast and easy to compute

* Because the functions are localized, changes
in coefficients produce localized changes in
the corresponding 1image

— Very useful for image analysis
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Haar transtform

e The Haar transform (Haar 1916) 1s the simplest
wavelet transform

e The algorithm: Given pixels a,, a;, a,, a;, ... ay_;:

a2 oo alalag

1. Compute sums & differences using pixel pairs:

2. Repeat the paired sums/diffs using s, s;, S5, .- Sy

3. Continue reductions until only one s value remains
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Haar transtform

e Haar 1s the simplest (lowest order) example
of the class of orthonormal transforms

— Transtormed array is same size as original
(# coetficients = # 1input pixels)

— Not translation invariant

— Can be made exactly reversible for integer
computations using the lifting scheme

e Extension to 2-D 1s easy

— Do one reduction step in X, then one in Y

— That makes a half-size 1mage; iterate on that
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Wavelet example:
Haar transform




Wavelet example:
Haar transform




Wavelet example:
Haar transform
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a trous transform

e The a trous (‘with holes’) transform
(Bijaoui, Starck & Murtagh 1994) 1s an
“undecimated” wavelet transform

— Translation invariant (unlike orthonormal
transforms)

— Produces a stack of images the size of the
original image

— Simple and fast to compute
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a trous algorithm

1. Start with data array and (small) kernel
— Data ﬂﬂ
Kemel SN - ENEEED

2. Convolve kernel with data,
st =k *q

— Smoothed

3. Subtract smoothed from original,
d?) = q-s(1)

— 15t Difference EHEH
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a trous algorithm

4. Expand kernel by adding holes (zeroes):

— 15t Kernel
— 2nd Kernel nn

5. Convolve new kernel with data,
§(2) = [ * (1)

— Smoothed

6. Subtract smoothed from original,
42 = §(1)_g(2)

— 28t Difference EHEH
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a trous algorithm

Repeat for N levels
— N 1s arbitrary, typically ~4
— Kernel doubles 1n size at each level

Result 1s the stack of difference 1images plus
the final smoothed image

— Inverse 1s very simple: sum all the 1mages
Extension to 2-D 1s obvious: smooth 1n x, y

Direct convolution 1s fast: number of non-
zero coefficients 1s small, separable kernel



Wavelet example:
a trous transform




Multi-scale Data Processing

e Translation-invariant wavelet transforms are
well-suited for image processing

* The conceptual simplicity of the a trous
transtform (smooth, subtract, repeat) makes
it easily modified for custom applications

— Example: multi-scale source detection
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Galaxy cluster
Abell 1689

HST/ACS
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HST/ACS
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Multi-scale source detection

e Uses modified a trous transtform that iterates
to remove sources detected 1n difference
image from the smoothed image

e Simple thresholding to define source 1slands
from each difference 1image

» Islands at larger scales can create new
sources or extend existing 1slands

— Multiple overlaps: simple rule based on sizes
and shapes of existing 1slands

7/2012




Image Compression

e Orthonormal wavelet transtforms keep
minimal information needed to describe
image

— Ideal for image compression (lossless or lossy)

— Approximating an image using wavelet
coefficients 1s far more accurate than other
schemes
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NGC 4911: Hubble Legacy Archive
ACS/WFC F606W 1024x1024 (517x517)




H-compress (Haar transtform) 1.50 bits/pixel




H-compress 0.899 bits/pixel




H-compress 0.515 bits/pixel




NGC 4911: Hubble Legacy Archive
ACS/WFC F606W 1024x1024 (517x517)




NGC 4911: Hubble Legacy Archive
ACS/WFC F606W 256x256 (12.8"x12.87)




H-compress 1.50 bits/pixel




H-compress 0.899 bits/pixel




H-compress 0.515 bits/pixel




Don’ t try this without the wavelet transform!
Results of row-by-row difference compression




Don’ t try this without the wavelet transform!
Results of row-by-row difference compression




Simple quantization, subtractive dither,
H-compress

1.65 bits/pixel




Image Compression

 Image and data compression have obvious
applications

— Reduce storage

— Reduce transmission bandwidth (esp. for space
missions)

e There are less obvious applications too

— Speed 1/0 bound processes (it can be faster to
read and uncompress)

— Reduce memory bandwidth (e.g., for GPUs)
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Deconvolution & Denoising

* A classic use of wavelets 1s denoising
images: filter out noise while leaving
significant structures

— This 1s what happens 1n 1mage compression too:
noise 1s incompressible, so discard it

* Denoising 1s a helpful addition in
deconvolution algorithms too
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Deconvolution 1n a Nutshell

* Images are blurred by a point-spread
function
— Spatially invariant PSF -> blurring 1s
convolution with PSF (but PSF may vary too)

 Many algorithms exist that attempt to
deconvolve data & recover unblurred 1image

— E.g., Richardson-Lucy iteration for data with
Poisson noise
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Iterative Deconvolution
Algorithm

. Start with 1nitial guess for image (e.g., flat)

. Convolve model image with PSF to create
simulated data

. Compute difference between simulated data and

observed data

. Use differences to adjust model image
— This step 1s specific to the algorithm being used

5. Repeat steps 2—4 until desired convergence
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[terative Deconvolution
Algorithm with Denoising

. Start with 1nitial guess for image (e.g., flat)

. Convolve model image with PSF to create
simulated data

. Compute difference between simulated data and

observed data

. Use differences to adjust model image
— This step 1s specific to the algorithm being used

5. Repeat steps 2—4 until desired convergence
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Deconvolution Amplifies Noise
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Deconvolution Eta Carina

WF/PC Raw WF/PC Lucy




Deconvolution Eta Carina

WF/PC Raw WF/PC Wavelet




Deconvolution Eta Carina

WFPC2 Raw WF/PC Wavelet




Deconvolution Eta Carina

WFPC2 Lucy WF/PC Wavelet




Summary: Image Processing

e Use Fourier transforms for convolutions
— Very fast when they are the right tool

— Also key for period finding, interferometry

e Use wavelet transforms for almost
everything else ...

— Denoising, compression, multi-scale
processing, ...
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