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Overview	


•  Image processing	



– Fourier transforms	


– Wavelet transforms & multi-scale processing	


– Compression	


– Deconvolution	


– Etc. …	
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Fourier Transforms	


•  Key fact: Fourier transforms make 

convolutions fast���
	

F(X * Y) = F(X) × F(Y)���

Fast FT (FFT) converts O(N2) operation to 
O(N log N)	



•  FTs occur naturally in radio interferometry 
(which measures FT of image)	


– Look to radio astronomy for clever adaptations, 

e.g., FFT for unevenly spaced data	
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Fourier Transforms	


•  FTs are complex-valued with amplitude and 

phase	


– Perhaps surprising: phase is more important 

than amplitude in capturing image information	
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Phase versus amplitude?	



Phase	



Phase	





Fourier Transforms	


•  FTs are complex-valued with amplitude and 

phase	


– Perhaps surprising: phase is more important 

than amplitude in capturing image information	


•  FT coefficients are global	



– Changing a single coefficient changes every 
pixel in the image 	
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Local changes, global effects	


Changed single FT coefficient	





Local changes, global effects	


Changed block (0.1%) of coefficients	





Fourier Transforms	


•  FTs are complex-valued with amplitude and 

phase	


– Perhaps surprising: phase is more important 

than amplitude in capturing image information	


•  FT coefficients are global	



– Changing a single coefficient changes every 
pixel in the image 	



– Essential for convolution theorem, but 
awkward when using FTs for analysis	
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Wavelet Transforms	


•  Wavelet transforms decompose an image 

into a sum of localized functions with 
various spatial scales	


– Fast and easy to compute	



•  Because the functions are localized, changes 
in coefficients produce localized changes in 
the corresponding image	


– Very useful for image analysis	
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Haar transform	


•  The Haar transform (Haar 1916) is the simplest 

wavelet transform	


•  The algorithm: Given pixels a0, a1, a2, a3, … aN-1:	



1.  Compute sums & differences using pixel pairs:	


s0 = (a1+a0)/2         d0 = (a1-a0)/2	


s1 = (a3+a2)/2         d1 = (a3-a2)/2	


…	



2.  Repeat the paired sums/diffs using s0, s1, s2, … sN/2-1	



3.  Continue reductions until only one s value remains	
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Haar transform	


•  Haar is the simplest (lowest order) example 

of the class of orthonormal transforms	


– Transformed array is same size as original ���

(# coefficients = # input pixels)	


– Not translation invariant	


– Can be made exactly reversible for integer 

computations using the lifting scheme	


•  Extension to 2-D is easy	



– Do one reduction step in X, then one in Y	


– That makes a half-size image; iterate on that	
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Wavelet example: ���
Haar transform	





Wavelet example: ���
Haar transform	



Y difference 

X difference 

XY diff 

Step 1	





Wavelet example: ���
Haar transform	



Step 2	





Wavelet example: ���
Haar transform	



Final	





à trous transform	


•  The à trous (‘with holes’) transform 

(Bijaoui, Starck & Murtagh 1994) is an 
“undecimated” wavelet transform	


– Translation invariant (unlike orthonormal 

transforms)	


– Produces a stack of images the size of the 

original image	


– Simple and fast to compute	



7/2012	

 17	





à trous algorithm	


1.  Start with data array and (small) kernel	



– Data	


– Kernel	



2.  Convolve kernel with data, ���
s(1) = k * a	


– Smoothed	



3.  Subtract smoothed from original, ���
d(1) = a-s(1) 	


–  1st Difference	
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à trous algorithm	


4.  Expand kernel by adding holes (zeroes):	



–  1st Kernel	


–  2nd Kernel	



5.  Convolve new kernel with data, ���
s(2) = k * s(1)	


– Smoothed	



6.  Subtract smoothed from original, ���
d(2) = s(1)-s(2)	


–  2st Difference	
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à trous algorithm	


•  Repeat for N levels	



– N is arbitrary, typically ~4	


– Kernel doubles in size at each level	



•  Result is the stack of difference images plus 
the final smoothed image	


–  Inverse is very simple: sum all the images	



•  Extension to 2-D is obvious: smooth in x, y	


•  Direct convolution is fast: number of non-

zero coefficients is small, separable kernel	
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Wavelet example: ���
à trous transform	



4 levels	





Multi-scale Data Processing	


•  Translation-invariant wavelet transforms are 

well-suited for image processing	


•  The conceptual simplicity of the à trous 

transform (smooth, subtract, repeat) makes 
it easily modified for custom applications	


– Example: multi-scale source detection 	
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Galaxy cluster 
Abell 1689���
HST/ACS	
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Galaxy cluster 
Abell 1689���
HST/ACS ���

���
SExtractor���

segmentation���
map	
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Galaxy cluster 
Abell 1689���
HST/ACS ���

���
Multi-scale 

segmentation 
using à trous 

transform	





Multi-scale source detection	


•  Uses modified à trous transform that iterates 

to remove sources detected in difference 
image from the smoothed image	



•  Simple thresholding to define source islands 
from each difference image	



•  Islands at larger scales can create new 
sources or extend existing islands	


– Multiple overlaps: simple rule based on sizes 

and shapes of existing islands	
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Image Compression	


•  Orthonormal wavelet transforms keep 

minimal information needed to describe 
image	


–  Ideal for image compression (lossless or lossy)	


– Approximating an image using wavelet 

coefficients is far more accurate than other 
schemes 	
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NGC 4911: Hubble Legacy Archive���
ACS/WFC F606W 1024x1024 (51”x51”)	





H-compress (Haar transform) 1.50 bits/pixel	





H-compress 0.899 bits/pixel	





H-compress 0.515 bits/pixel	





NGC 4911: Hubble Legacy Archive���
ACS/WFC F606W 1024x1024 (51”x51”)	





NGC 4911: Hubble Legacy Archive���
ACS/WFC F606W 256x256 (12.8”x12.8”)	





H-compress 1.50 bits/pixel	





H-compress 0.899 bits/pixel	





H-compress 0.515 bits/pixel	





Don’t try this without the wavelet transform!���
Results of row-by-row difference compression	





Don’t try this without the wavelet transform!���
Results of row-by-row difference compression	





Simple quantization, subtractive dither,���
H-compress	



1.65 bits/pixel	



1.50 bits/pixel	





Image Compression	


•  Image and data compression have obvious 

applications	


– Reduce storage	


– Reduce transmission bandwidth (esp. for space 

missions)	


•  There are less obvious applications too	



– Speed I/O bound processes (it can be faster to 
read and uncompress)	



– Reduce memory bandwidth (e.g., for GPUs)	
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Deconvolution & Denoising	


•  A classic use of wavelets is denoising 

images: filter out noise while leaving 
significant structures	


– This is what happens in image compression too: 

noise is incompressible, so discard it	


•  Denoising is a helpful addition in 

deconvolution algorithms too	
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Deconvolution in a Nutshell	


•  Images are blurred by a point-spread 

function	


– Spatially invariant PSF -> blurring is 

convolution with PSF (but PSF may vary too)	


•  Many algorithms exist that attempt to 

deconvolve data & recover unblurred image	


– E.g., Richardson-Lucy iteration for data with 

Poisson noise	
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Iterative Deconvolution 
Algorithm	



1.  Start with initial guess for image (e.g., flat)	


2.  Convolve model image with PSF to create 

simulated data	


3.  Compute difference between simulated data and 

observed data	


4.  Use differences to adjust model image	



–  This step is specific to the algorithm being used	


5.  Repeat steps 2–4 until desired convergence	
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Iterative Deconvolution 
Algorithm with Denoising	



1.  Start with initial guess for image (e.g., flat)	


2.  Convolve model image with PSF to create 

simulated data	


3.  Compute difference between simulated data and 

observed data	


3.5 Denoise differences with wavelet filter (Starck & 

	

Murtagh 1994)	


4.  Use differences to adjust model image	



–  This step is specific to the algorithm being used	


5.  Repeat steps 2–4 until desired convergence	
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Deconvolution Amplifies Noise	





Deconvolution Eta Carina	





Deconvolution Eta Carina	





Deconvolution Eta Carina	





Deconvolution Eta Carina	





Summary: Image Processing	


•  Use Fourier transforms for convolutions	



– Very fast when they are the right tool	


– Also key for period finding, interferometry	



•  Use wavelet transforms for almost 
everything else …	


– Denoising, compression, multi-scale 

processing, …	
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