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Big Data in Science 

•  Data growing exponentially, in all science 
•  All science is becoming data-driven 
•  This is happening very rapidly 
•  Data becoming increasingly open/public 
•  Non-incremental! 
•  Convergence of physical and life sciences  

through Big Data (statistics and computing) 
•  The “long tail” is important 
•  A scientific revolution in how discovery takes place 

          => a rare and unique opportunity 



Scientific Data Analysis Today  

•  Scientific data is doubling every year, reaching PBs 
–  CERN is at 22PB today, 10K genomes ~5PB 

•  Data will never will be at a single location 
•  Architectures increasingly CPU-heavy, IO-poor 
•  Scientists need special features (arrays, GPUs) 
•  Most data analysis done on midsize BeoWulf clusters 
•  Universities hitting the “power wall” 
•  Soon we cannot even store the incoming data stream 
•  Not scalable, not maintainable… 





Why Is Astronomy Interesting? 

•  Approach inherently and traditionally data-driven 
–  Cannot do experiments… 

•  Important spatio-temporal features 
•  Very large density contrasts in populations 
•  Real errors and covariances 
•  Many signals very subtle, buried in systematics 
•  Data sets large, pushing scalability 

–  LSST will be 100PB 

“Exciting, since it is worthless!” 

—	
  Jim Gray 



Data in HPC Simulations 

•  HPC is an instrument in its own right 
•  Largest simulations approach petabytes 

–  from supernovae to turbulence, biology and brain modeling 

•  Need public access to the best and latest through 
interactive numerical laboratories 

•  Creates new challenges in 
–  how to move the petabytes of data (high speed networking) 
–  How to look at it (render on top of the data, drive remotely) 
–  How to interface (virtual sensors, immersive analysis) 
–  How to analyze (algorithms, scalable analytics) 



Immersive Turbulence 

“… the last unsolved problem of classical physics…” Feynman 

•  Understand the nature of turbulence 
–  Consecutive snapshots of a large  

simulation of turbulence: 
now 30 Terabytes 

–  Treat it as an experiment, play with 
the database!  

–  Shoot test particles (sensors) from  
your laptop into the simulation, 
like in the movie Twister 

–  Next: 70TB MHD simulation 

•  New paradigm for analyzing simulations! 
with C. Meneveau, S. Chen (Mech. E), G. Eyink (Applied Math), R. Burns (CS) 



advect backwards in time ! 

-	



-

-
minus 

Not possible during DNS  

Sample code (fortran 90) 



u(x,y,z0,t0) extracted from database using Matlab (C. Verhulst) 



Vorticity magnitude extracted from database  
using C (J. Pietarila-Graham, viz: VAPOR)  



Daily Usage 

2011: exceeded 100B points, delivered publicly 



Cosmological Simulations 

In 2005 cosmological simulations had 1010 particles and  
produced over 30TB of data (Millennium) 

•  Build up dark matter halos 
•  Track merging history of halos 
•  Use it to assign star formation history 
•  Combination with spectral synthesis 
•  Realistic distribution of galaxy types 

•  Today: simulations with 1012 particles and PB of output 
are under way (MillenniumXXL, Silver River, etc) 

•  Hard to analyze the data afterwards 
•  What is the best way to compare to real data? 



Time evolution: merger trees 

DAC07, 2007-07-10 13 

From G. Lemson 



Spatial queries, random samples 

•  Spatial queries require multi-dimensional 
indexes. 

•  (x,y,z) does not work: need discretisation 
–  index on (ix,iy,iz) withix=floor(x/10) etc 

•  More sophisticated: space fillilng curves 
–  bit-interleaving/octtree/Z-Index 
–  Peano-Hilbert curve 
–  Need custom functions for range queries 
–  Plug in modular space filling library (Budavari) 

•  Random sampling using a RANDOM column 
–  RANDOM from [0,1000000] 



The Milky Way Laboratory 

•  Use cosmology simulations as an immersive 
laboratory for general users 

•  Via Lactea-II (20TB) as prototype, then Silver River 
(50B particles) as production (15M CPU hours) 

•  800+ hi-rez snapshots (2.6PB) => 800TB in DB 
•  Users can insert test particles (dwarf galaxies) into  

system and follow trajectories in  
pre-computed simulation 

•  Users interact remotely with  
a PB in ‘real time’ 

Madau, Rockosi, Szalay, Wyse, Silk, Kuhlen, 
Lemson, Westermann, Blakeley 



Visualizing Petabytes 

•  Needs to be done where the data is… 
•  It is easier to send a HD 3D video stream to the user 

than all the data  
–  Interactive visualizations driven remotely 

•  Visualizations are becoming IO limited: 
precompute octree and prefetch to SSDs 

•  It is possible to build individual servers with extreme 
data rates (5GBps per server… see Data-Scope) 

•  Prototype on turbulence simulation already works: 
data streaming directly from DB to GPU 

•  N-body simulations next 







Kai Buerger, Technische Universitat Munich, 24 million particles 

Streaming Visualization of Turbulence 



Kai Buerger, Technische Universitat Munich 

Visualization of the Vorticity 



Via Lactea-II 



Real Time Interactions with TB 

•  Aquarius simulation (V.Springel, Heidelberg) 
•  150M particles, 128 timesteps 
•  20B total points, 1.4TB total 
•  Real-time, interactive on a single GeForce 9800 
•  Hierarchical merging of particles over an octree 
•  Trajectories computed from 3 subsequent snapshots 
•  Tag particles of interest interactively 
•  Limiting factor: disk streaming speed 
•  Done by an undergraduate over two months (Tamas 

Szalay) with Volker Springel and G. Lemson 

http://arxiv.org/abs/0811.2055 



DISC Challenges 

DISC: Data Intensive Scalable Computing 
•  Where are the systems challenges today? 

–  Storage size 
–  System balance 
–  Data mobility 
–  Statistical algorithms 
–  Scalability/power 

•  What is being done to soften it? 
–  Scale up or scale out… 
–  New SW platforms emerging 
–  Testing disruptive technologies 
–  New streaming algorithms 



Gray’s Laws of Data Engineering 

Jim Gray: 
•  Scientific computing is revolving around data 
•  Need scale-out solution for analysis 
•  Take the analysis to the data! 
•  Start with “20 queries” 
•  Go from “working to working” 



Amdahl’s Laws 

Gene Amdahl (1965):  Laws for a balanced system 
i.  Parallelism: max speedup is S/(S+P) 
ii.  One bit of IO/sec per instruction/sec (BW) 
iii.  One byte of memory per one instruction/sec (MEM) 

Modern multi-core systems move farther  
away from Amdahl’s Laws  
(Bell, Gray and Szalay 2006) 



Typical Amdahl Numbers 



Amdahl Numbers for Data Sets 

Data Analysis 
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DISC Needs Today 

•  Disk space, disk space, disk space!!!! 
•  Current problems not on Google scale yet: 

–  10-30TB easy, 100TB doable, 300TB really hard 
–  For detailed analysis we need to park data for several months 

•  Sequential IO bandwidth 
–  If not sequential for large data set, we cannot do it 

•  How do can move 100TB within a University? 
–  1Gbps   10 days 
–  10 Gbps     1 day  (but need to share backbone) 
–  100 lbs box    few hours 

•  From outside? 
–  Dedicated 10Gbps or FedEx 



Silver River Transfer 

•  150TB in less than 10 days from Oak Ridge to JHU 
using a dedicated 10G connection 



Tradeoffs Today 

Stu Feldman: Extreme computing is about tradeoffs 

Ordered priorities for data-intensive scientific computing 

1.  Total storage  (-> low redundancy) 
2.  Cost   (-> total cost vs price of raw disks) 
3.  Sequential IO  (-> locally attached disks, fast ctrl) 
4.  Fast streams  (->GPUs inside server) 
5.  Low power  (-> slow normal CPUs, lots of disks/mobo) 

The order will be different every year… 



Cost of a Petabyte 

From backblaze.com 
Aug 2009 



JHU Data-Scope 

•  Funded by NSF MRI to build a new ‘instrument’ to look at data 
•  Goal: 102 servers for $1M + about $200K switches+racks 
•  Two-tier: performance (P) and storage (S) 
•  Large (5PB) + cheap  + fast (400+GBps), but … 

.          ..a special purpose instrument 

Final	
  configura-on	
  
1P 1S All P All S Full 

 servers 1 1 90 6 102 
 rack units 4 34 360 204 564 
 capacity 24 720 2160 4320 6480  TB 
 price 8.8 57 8.8 57 792  $K 
 power 1.4 10 126 60 186  kW 
 GPU* 1.35 0 121.5 0 122  TF 
 seq IO 5.3 3.8 477 23 500  GBps 
 IOPS 240 54 21600 324 21924  kIOPS 
 netwk bw 10 20 900 240 1140  Gbps 



Increased Diversification 

One shoe does not fit all! 
•  Diversity grows naturally, no matter what 
•  Evolutionary pressures help 
•  Individual groups want  

specializations 

•  Large floating point calculations move to GPUs 
•  Big data moves into the cloud  

(private or public) 
•  RandomIO moves to Solid State Disks 
•  Stream processing emerging 
•  noSQL vs databases vs column store vs SciDB 

… 
At the same time 
"   What remains in the middle? 

"   Common denominator is Big Data 
"   Data management 

"   Everybody needs it, nobody enjoys to do it 
"   We are still building our own… over and over 



Cyberbricks? 

•  36-node Amdahl cluster using 1200W total 
–  Zotac Atom/ION motherboards 
–  4GB of memory, N330 dual core Atom, 16 GPU cores 

•  Aggregate disk space 43.6TB 
–  63 x 120GB SSD        =    7.7 TB 
–  27x 1TB Samsung F1 = 27.0 TB 
–  18x.5TB Samsung M1=   9.0 TB 

•  Blazing I/O Performance: 18GB/s 
•  Amdahl number = 1 for under $30K 
•  Using the GPUs for data mining: 

–  6.4B multidimensional regressions 
in 5 minutes over 1.2TB 

–  Ported RF module from R in C#/CUDA 
Szalay, Bell, Huang, Terzis, White (Hotpower-09) 



Correlation Function on GPUs 

•  We need to reconsider the N logN only approach 
•  Once we can run 100K threads, maybe running SIMD 

N2 on smaller partitions is also acceptable 
•  Recent JHU effort on integrating CUDA with SQL 

Server, using SQL UDF 
•  Galaxy spatial correlations:  

600 trillion real and random  
galaxy pairs using brute force N2 

•  Much faster than the tree codes! 
–  This is because high resolution was 

needed… 

Tian, Budavari, Neyrinck, Szalay 2010 



Via Lactea-II 

•  Computing the gamma-ray annihilation map 
•  Goal: build an interactive service 
•  Original calculation:  

8 hrs/image 

•   GPU + Open GL: 
    50 sec 



Sociology 

•  Broad sociological changes 
–  Convergence of Physical and Life Sciences 
–  Data collection in ever larger collaborations  
–  Virtual Observatories: CERN, VAO, NCBI, NEON, OOI,… 
–  Analysis decoupled, off archived data by smaller groups 
–  Emergence of  the citizen/internet scientist 
–  Impact of demographic changes in science 

•  Need to start training the next generations 
–  П-shaped vs I-shaped people 
–  Early involvement in “Computational thinking” 



Summary 

•  Science is increasingly driven by data (large and small) 
•  Large data sets are here, COTS solutions are not 
•  Changing sociology 
•  From hypothesis-driven to data-driven science 
•  We need new instruments: “microscopes” and 

“telescopes” for data 
•  There is also a problem on the “long tail” 
•  Same problems present in business and society 
•  Data changes not only science, but society 
•  A new, Fourth Paradigm of Science is emerging… 

A convergence of statistics, computer science, 
physical and life sciences….. 


