## Simulating the Sky

Or: Creating, Testing, and Using Simulations of the Galaxy Population in the era of surveys of 10 billion galaxies

#### Risa Wechsler KIPAC @ Stanford & SLAC



# what are we trying to simulate?

### Sloan Digital Sky Survey 2000-2010

#### • I million galaxies with spectra

- 200 million galaxies with photometry
- I/4 of the sky

## Deep Surveys



Hubble Ultra Deep Field

~10000 galaxies over 1/13 millionth of the sky implies ~100 billion galaxies to this depth

### CANDELS 2010-2013

- Largest ever HST project (902 orbits)
- ~250,000 galaxies from I < z < 8
- deep multi-wavelength data
- 800 sq. arcminutes (1/200,000th of the sky)

# **BOSS** 2010-2014

- 1.3 million spectra
- 1/4 sky
- primarily red luminous galaxies from 0.45 < z < 0.7</li>

# The Dark Energy Survey 2012-2018

#### 300 million galaxies

- I/8 of the sky
- ~ 2.5 magnitudes deeper than SDSS
- g,r,i,z,Y + overlap with VISTA (JHK) + SPT
- first light October 2012



#### 2018-2028

- I0 billion galaxies
- half the sky
- 5 magnitudes deeper than SDSS

LSST

- image every 3 nights
- 30 TB/night, ~100 PB over 10 years

## and many more

- PANSTARRS
- Skymapper
- BigBoss
- JWST
- Euclid
- WFIRST
- large HI surveys
- deep spectroscopy on 30 m
- next generation spectroscopic surveys...

# what aspects are important?

- galaxy positions
- magnitudes
- colors
- SEDS
- shapes
- sizes
- morphologies, including substructure within galaxies
- impact of lensing (shear, magnification, multiple images)
- impact of the atmosphere and telescope
- correlations between all of the above
- scales from very small (object detection) to very large (size of surveys; several Gpc)

almost everything.

# changing paradigm of simulations in astronomy

- old: simulations provide basic properties, e.g. mass function, power spectrum, links between one galaxy population and another, tool for exploring physics and basic physical understanding.
- new: simulations are integrated into analysis framework. analysis is done in parallel on real and simulated data. in many cases robust & meaningful scientific conclusions are not possible without simulations.

## the cosmological model



#### we have a standard cosmological model

current cosmological model can be described by 7 cosmological parameters -amount of: dark matter, baryons, dark energy + neutrinos (<0.1%) expansion rate (h) size of the fluctuations (A/s8) how the fluctuations vary with scale (n) + the optical depth to reionization

#### is this model correct in detail?

need to make detailed predictions for what the universe looks like, in the context of this model, and test them against the data.

simulations: Wu, Hahn & Wechsler visualization: Ralf Kaehler

dark matter halos are the basic unit of structure formation and of galaxy formation

## galaxy formation

- we have a basic paradigm.
- galaxies form in dark matter halos every halo massive enough to form stars hosts a galaxy
- we know how these dark matter halos form and grow over time; this controls how galaxies merge and grow
- most physical processes that might contribute are understood at a basic level.
- relative importance, interactions still unclear

## galaxy formation

determining which physical processes dominate in galaxy formation requires exploring parameter space with both detailed hydrodynamical simulations and semi-analytic models

## dark matter

- 85% of the mass in the Universe.
- surveys are mapping out where it is, in precise detail.
- determining *what* it is requires detailed predictions of the cosmological model.

## dark matter

determining the mass and cross section of the dark matter particle will take both particle physics and astrophysics

examples of where we need large simulations: (a) need to understand the cosmological context of the MW: very large volume. (b) need to understand very small substructures and the impact of baryons: very high resolution. dark energy (+ inflation, neutrino mass, modified gravity, etc.)

- galaxy clustering (BAO, galaxy power spectrum, small scale clustering)
- galaxy cluster abundance
- weak lensing (shear power spectrum, galaxy galaxy lensing)

dark energy main cosmological probes already are or soon will be in the systematics dominated regime

> theory systematics: need to get from ~7++ parameters specifying the cosmological model to better than 1% predictions for structure formation and its *observable tracers*, e.g. observable properties of clusters, observable impact of shear, observable galaxy clustering

observational systematics: e.g. star-galaxy separation, deblending, photometry, cluster miscentering

## precise requirements



Rudd, Zentner & Kravtsov et al 2008



Wu, Zentner & Wechsler et al 2010

#### use of simulations in interpreting survey data

several goals that require the same sort of simulations, e.g.:

- precise predictions for a variety of structure formation probes
- development and verification of science ready codes to work on large volumes
- understanding the instrument
- understanding observational systematics
- covariance matrices to determine error bars. needed not just for one measurement, but for many (e.g.: lensing, galaxy clustering, galaxy clusters)
- impact of galaxy formation & galaxy selection (type dependent bias)



- so you want to simulate 10-100 million galaxies over the whole sky.
- you want to understand the impact of
  - cosmological model
  - galaxy formation physics
  - observational systematics
  - on the observables of this galaxy population.
- you want to do this to better than 1% accuracy for several observables.
- you want to do it in more volume than is observed.

# sounds easy :)

#### 3.4 Gpc





largest single simulation: Millennium XXL (300 billion particles)

largest single halos: Phoenix, Ghalo, Aquarius, via Lactea

dark matter halos are the basic unit of structure formation and of galaxy formation

resolve dark matter halos for the galaxies you want to model properly.



### galaxies also live in substructures

resolve dark matter halos and substructures for the galaxies you want to model properly.