
Lecture Three: Time Series Analysis 

“If your experiment needs statistics, you ought to 
have done a better experiment.” 
Ernest Rutherford 



Time domain data (a day at a time) 



Time domain data (a day at a time) 



Sampling, noise, and baseline are all 
important 

Lightcurve shape as a proxy for metalicity (phases in a Fourier 
series). Noise in period determination (sparse sampling) reflected 
in the metalicity accuracy 



What is a light curve? 

G(t|θ) are functions (uneven sampling, period or non-periodic)  
For example G(t) = sin(wt), or G(t) = exp(-Bt) 



Fourier Analysis 

Convolution, deconvolution, filtering, correlation and 
autocorrelation, power spectrum are easy for evenly sampled,  
high signal-to-noise data. Low  signal-to-noise and uneven  
sampling Bayesian analyses can can be better 

Fourier transform 

Inverse Fourier  
transform 

Numerical Recipes define this with a minus sign 
Note also the packing of the arrays  



Power Spectrum (PSD) 

Power Spectrum is the amount of power in the frequency interval f f+df 

                                                        FT 

Total power is the same whether computed in frequency or time domain  
(Parsevals Theorem) 

€ 

h(t) = sin(2πt /T)

€ 

PSD( f ) = δ( f =1/T)



Fourier Analysis in Python 

import numpy as np 
from scipy import fftpack 

# compute PSD using simple FFT 
N = len(data) 
df = 1. / (N * dt) 
PSD = abs(dt * fftpack.fft(data)[:N / 2]) ** 2 
f = df * np.arange(N / 2) 



How do we deal with sampled data 

Sampling of the data – you just cant get away from it… 

Uniformly sampled 

FFT O(NlogN) rather than N^2 (numpy.fft and scipy.fft) 



Sampling frequencies: Nyquist 

What is the relation between continuous and sampled FFTs 

Nyquist sampling theorem 
•  For band-limited data (H(f)=0 for |f| > fc)  

      (the band limit or Nyquist frequency) 

•  There is some resolution limit in time tc = 1/(2 fc) below 
 which h(t) appears smooth 

      
    T 

We can now reconstruct h(t) from evenly sampled data when 
δt < tc (Shannon interpolation formula or sinc shifting) 



Estimating the PSD 



Welch transform 

Compute FFT for multiple overlapping windows on the data 



Welch’s transform in Python 

from matplotlib import mlab 

# compute PSD using Welch's method 
# this uses overlapping windows to reduce noise 
PSDW, fW = mlab.psd(data, NFFT=4096, Fs = 1. / dt) 



Filtering decreases the information (even if visually you are  
suppressing the noise) and you should consider fitting to the  
raw data when fitting models 

Low pass filter suppress frequencies with f > fc 

Could set f>fc to zero in ϕ(f) but this causes ringing 

Optimal filter is Wiener filter (minimize MISE Ŷ – Y) 

Filtering Data 

Signal Noise 



Wiener Filtering 

An interesting relation to kernel density estimation 

Usually fit signal and noise to PSD (assumes uncorrelated noise)  



Wiener filtering in Python 
import numpy as np 
from scipy import optimize, fftpack 

# compute the PSD 

# Set up the Wiener filter: 
# fit a model to the PSD consisting of the sum of a Gaussian and white noise 
signal = lambda x, A, width: A * np.exp(-0.5 * (x / width) ** 2) 
noise = lambda x, n: n * np.ones(x.shape) 

func = lambda v: np.sum((PSD - signal(f, v[0], v[1]) - noise(f, v[2])) ** 2) 
v0 = [5000, 0.1, 10] 
v = optimize.fmin(func, v0) 

P_S = signal(f, v[0], v[1]) 
P_N = noise(f, v[2]) 

# define Wiener filter 
Phi = P_S / (P_S + P_N) 

h_smooth = fftpack.ifft(Phi * HN) 



Minimum component filtering 

Used for the case of fitting the baseline (continuum) 
•  Mask regions of signal and fit low order polynomial 
       model to unmask regions 
•  Subtract the low order model and FFT the signal 
•  Remove high frequencies using a low pass filter 
•  Inverse FT and add the baseline fit 





Is there signal in my noise? 

Hypothesis testing – are the data consistent with a  
       stationary process 

Simple example: 

Minimum detected variability amplitude  
€ 

y(t) = Asin(wt)

€ 

var(t) =σ2 +
A2

2

Χ2 of the data (assuming A=0) 



Is there a periodicity in the data? 

Non-linear in w and Φ Linear in all but w 

Consider it a least-squares problem – without 
requiring evenly sampled data 



Periodogram 

Time Space 

FFT Space 



Lomb-Scargle Periodogram 

Generalized for heteroscedastic errors but still corresponds 
to a single sinusoidal model. Model is non-linear in frequency  
so we typically maximize that through a grid search 





import numpy as np 

from astroML.periodogram import lomb_scargle, search_frequencies 
# generate data 
t = np.random.randint(100, size=N) + 0.3 + 0.4 * np.random.random(N) 
y = 10 + np.sin(2 * np.pi * t / P) 
dy = 0.5 + 0.5 * np.random.random(N) 

y_obs = y + np.random.normal(0, dy) 

period = 10 ** np.linspace(-1, 0, 1000) 
omega = 2 * np.pi / period 

sig = np.array([0.1, 0.01, 0.001]) 
PS, z = lomb_scargle(t, y_obs, dy, omega, modified=True, significance=sig) 

omega_sample, PS_sample = search_frequencies(t, y_obs, dy, 
                                             n_save=100, 
                                             LS_kwargs=dict(modified=True)) 



Generalized Lomb-Scargle 

LS assumes a zero mean (calculated from the data) which  can bias the  
results. We can however add this as a term to the analysis 



Where next... 

Classification Regression 



Where next... 

Read the book – send comments/corrections/
suggestions 

ajc@astro.washington.edu 


