PRACTICAL ANALYTICS

Statistics

Tamás Budavári

- Of numbers
- Of vectors
- Of functions
- Of trees

- Description, modeling, inference, machine learning
- Bayesian / Frequentist / Pragmatist ?

	Supervised	Unsupervised	
Discrete	Classification	Clustering	
Continuous	Regression	Dimensional Reduction	

What's Large?

- VOLUME
 - □ Say >100TB today but tomorrow? Moving target...
- COMPLEXITY
 - The raw dataset are simple unlike their derivatives
- DEFINITION?
 - Large when you cannot apply the "usual" tools

Data

LARGE!!

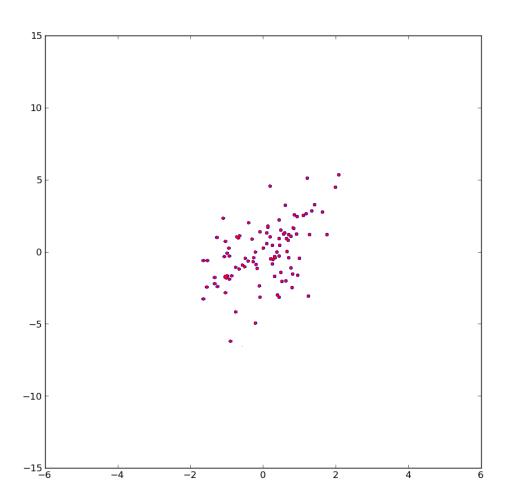
Data

LARGE!!

ISSAC at HIPACC

Large?

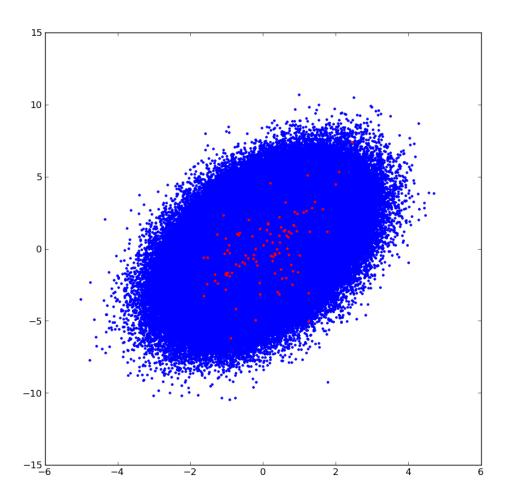
Sample size



Large?

Sample size

MORE OUTLIERS!

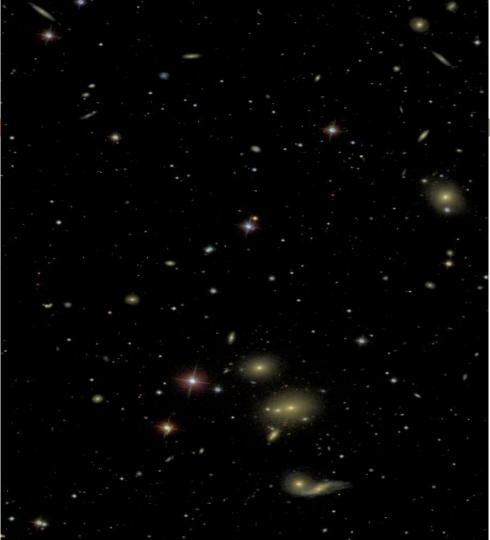


Large?

- Dimensions
 - Ratio of surface/volume grows

all points are lonely in high dimensions

THE CURSE OF DIMENSIONALITY!



Keeping Up?

Tamás Budavári

- Image processing
- Catalog extraction
 - \Box O(n)
- What is difficult?
 - \Box $O(n \log n)$
 - \bigcirc $O(n^2), ...$

Worse w/ Moore's law

Fundamental Challenges

Tamás Budavári

- Cross-identification of sources
 - To assemble multicolor catalogs
- Drop-outs from sky coverage
 - To constrain fluxes not detected
- Constraining physical properties
 - To interpret the data

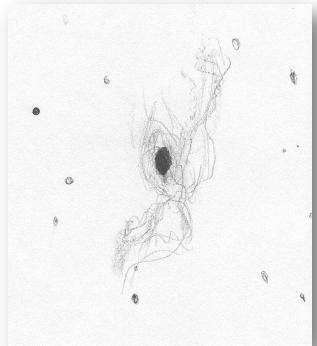
Cross-Identification

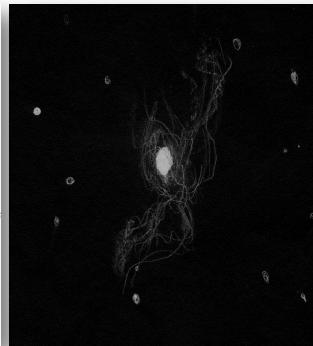
From long-tail science to the largest experiments

Recording Observations

- Astronomers drew it...
- Now kids do it on SkyServer

#1 by Haley \Rightarrow

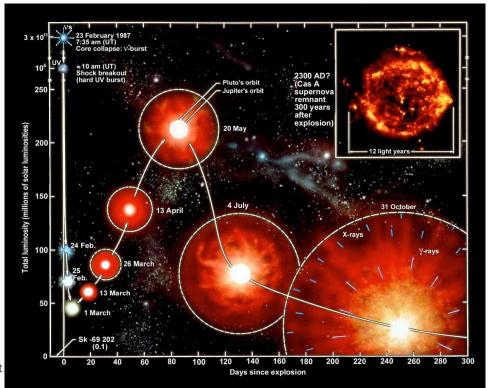


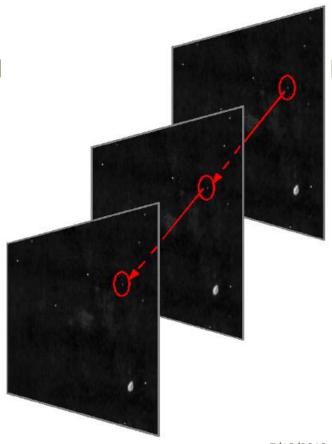


Multicolor Universe

Tamás Budavári

Eventful Universe





ISSAC at

7/19/2012

Cross-Identification

One of the most fundamental analysis steps

What is the Right Question?

Tamás Budavári

- Cross-identification is a hard problem
 - Computationally, Scientifically & Statistically
 - Need symmetric *n*-way solution
 - Need reliable quality measure
- Same or not?
 - Distance threshold? Maximum likelihood?

?

Tabletop Astronomy

- Imagine the observed sky has only 6 pixels
 - **□** *One object*: one die
 - *Observing*: rolling a die
 - *Locality*: die is loaded
 - Sky: a bag of dice

Tamás Budavári

- Crossmatch: draw two dice with replacement
 - Same or not?

7/19/2012 7/19/2012

Tamás Budavári

- Crossmatch: draw two dice with replacement
 - Same or not?
- Bayes Factor is the ratio of the
 - Likelihood of "Same"
 - Likelihood of "Not"
- Likelihood of a hypothesis?
 - Sum over all possibilities

Tamás Budavári

- Model for loaded dice is matrix of probabilities
 - \blacksquare E.g., loaded toward l=1
 - Etc. for l = 2...6

$$P_1(\mathbf{O}) = \frac{3}{12}, \quad P_1(\mathbf{O}) = \frac{1}{12}, \quad P_1(\mathbf{O}) = \frac{2}{12}, \dots$$

- 2-way case
 - Same: $l_1 = l_2 = l$
 - Not: $l_1 \text{may} \neq l_2$
- □ *n*-way: same

Tamás Budavári

- Model for loaded dice is matrix of probabilities
 - \blacksquare E.g., loaded toward l=1
 - \blacksquare Etc. for l = 2...6

$$P_1(\mathbf{O}) = \frac{3}{12}, \quad P_1(\mathbf{O}) = \frac{1}{12}, \quad P_1(\mathbf{O}) = \frac{2}{12}, \dots$$

2-way case

Same:
$$l_1 = l_2 = l$$

■ Same:
$$l_1 = l_2 = l$$
 $L_{\text{same}} = \frac{1}{6} \sum_{l} P_l(\boxdot) P_l(\boxdot)$

■ Not:
$$l_1 \text{may} \neq l_2$$

Tamás Budavári

- Model for loaded dice is matrix of probabilities
 - \blacksquare E.g., loaded toward l=1
 - \blacksquare Etc. for l = 2...6

$$P_1(\mathbf{O}) = \frac{3}{12}, \quad P_1(\mathbf{O}) = \frac{1}{12}, \quad P_1(\mathbf{O}) = \frac{2}{12}, \dots$$

2-way case

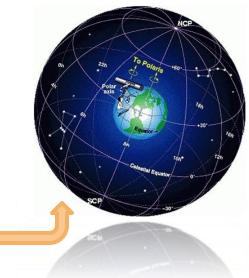
$$L_{\text{same}} = \frac{1}{6} \sum_{l} P_{l}(\mathbf{O}) P_{l}(\mathbf{O})$$

Same:
$$l_1 = l_2 = l$$
 $L_{\text{same}} = \frac{1}{6} \sum_{l_1} P_l(\boxdot) P_l(\boxdot)$
Not: $l_1 \text{may} \neq l_2$ $L_{\text{not}} = \begin{bmatrix} \frac{1}{6} \sum_{l_1} P_{l_1}(\boxdot) \end{bmatrix} \begin{bmatrix} \frac{1}{6} \sum_{l_2} P_{l_2}(\boxdot) \end{bmatrix}$

n-way: same

Celestial Sphere

- Continuous functions
- General formalism
 - Accuracy is a density fn on sky



7/19/2012 7/19/2012

Modeling the Astrometry

Tamás Budavári

- Astrometric precision
 - A simple function

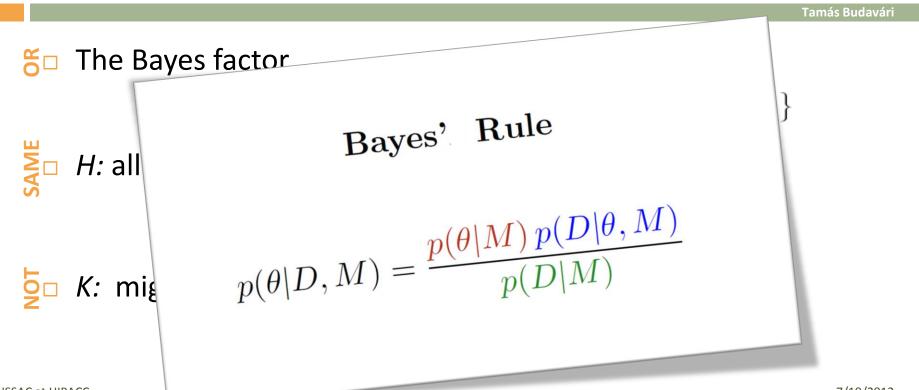
- Where on the sky?
 - Anywhere really...

 $p(\vec{x}|\vec{m}, M)$

5□ The Bayes factor

$$B(H, K|D) = \frac{p(D|H)}{p(D|K)}$$
 $D = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$

= H: all observations of the same object at m



ISSAC at HIPACC

5□ The Bayes factor

$$B(H, K|D) = \frac{p(D|H)}{p(D|K)}$$
 $D = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$

= H: all observations of the same object at m

$$B(H, K|D) = \frac{p(D|H)}{p(D|K)}$$
 $D = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$

= H: all observations of the same object at m

On the sky
$$p(D|H) = \int p(\vec{m}|H) \prod_{i=1}^{n} p_i(\vec{x}_i|\vec{m}, H) d^3m$$

Astrometry

5□ The Bayes factor

$$B(H, K|D) = \frac{p(D|H)}{p(D|K)}$$
 $D = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$

 $\frac{1}{2}$ H: all observations of the same object at m

On the sky
$$p(D|H) = \int p(\vec{m}|H) \prod_{i=1}^{n} p_i(\vec{x}_i|\vec{m}, H) d^3m$$

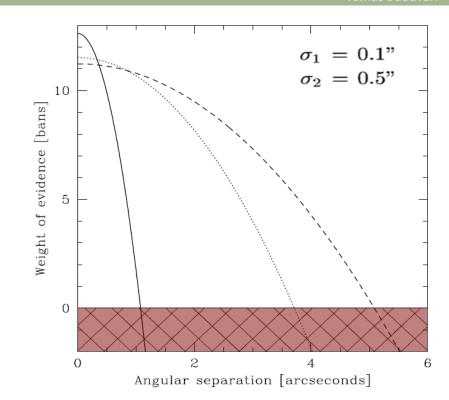
$$p(D|K) = \prod_{i=1}^{n} \left\{ \int p(\vec{m}_i|K) p_i(\vec{x}_i|\vec{m}_i, K) d^3m_i \right\}$$

Analytic Results

- Normal distribution
 - Flat and spherical
 - Gauss and Fisher

2-way results

$$B = \frac{2}{\sigma_1^2 + \sigma_2^2} \exp\left\{-\frac{\psi^2}{2(\sigma_1^2 + \sigma_2^2)}\right\}$$



Normal Distribution

Astrometric precision:

$$w = 1/\sigma^2$$

Fisher distribution:

$$N(\vec{x}|w,\vec{m}) = \frac{w\,\delta(|\vec{x}|-1)}{4\pi\sinh w}\,\exp(w\,\vec{m}\vec{x})$$

Analytic results:

$$B(H, K|D) = \frac{\sinh w}{w} \prod_{i=1}^{n} \frac{w_i}{\sinh w_i}, \quad w = \left| \sum_{i=1}^{n} w_i \vec{x}_i \right|$$

For high accuracies:

$$=2^{n-1}\frac{\prod w_i}{\sum w_i}\exp\left\{-\frac{\sum_{i< j}w_iw_j\psi_{ij}^2}{2\sum w_i}\right\}$$

Wikipedia: Interpretation

B		dB	bits	Strength of evidence
< 1:1		< 0		Negative (supports M ₂)
1:1 to 3	3:1	0 to 5	0 to 1.6	Barely worth mentioning
3:1 to 1	0:1	5 to 10	1.6 to 3.3	Substantial
10:1 to 3	30:1	10 to 15	3.3 to 5.0	Strong
30:1 to 1	00:1	15 to 20	5.0 to 6.6	Very strong
>100:	1	>20	>6.6	Decisive

Tamás Budavári

ISSAC at HIPACC

Probability of a Match

Same or not?

From Priors to Posteriors

Bayes factor is the connection

$$\frac{P(H|D)}{P(\bar{H}|D)} = \frac{P(H) \, p(D|H)}{P(\bar{H}) \, p(D|\bar{H})}$$

$$\frac{P(H|D)}{P(\bar{H}|D)} = \frac{P(H)}{P(\bar{H})} B(H, \bar{H}|D)$$

$$\frac{P(H|D)}{1 - P(H|D)} = \frac{P(H)}{1 - P(H)} B(H, \bar{H}|D)$$

$$P(H|D) = \left[1 + \frac{1 - P(H)}{BP(H)}\right]^{-1}$$

From Priors to Posteriors

Posterior probability from prior & Bayes factor

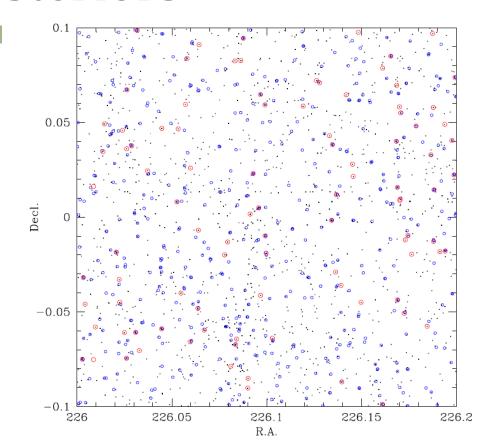
$$P(H|D) = \left[1 + \frac{1 - P(H)}{BP(H)}\right]^{-1}$$

- Prior probability of a match
 - Like dice in a bag: 1/N and N^{1-n}
 - In general?

From Priors to Posteriors

- Different selections
 - **Nearby** / Distant
 - Red / Blue
- But only 1 number.

$$P_0 = \frac{N_{\star}}{\prod N_i}$$



Prior has an unknown fudge-factor

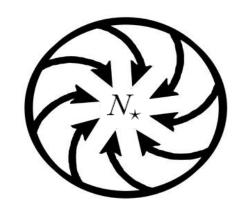
Self-Consistent Estimates

■ Educated guess
$$P(H|D) = \left[1 + \frac{1 - P(H)}{BP(H)}\right]^{-1}$$

□ Or solve for it:

$$\sum P(H) = N_{\star}$$

$$\sum P(H|D) = N_{\star}$$

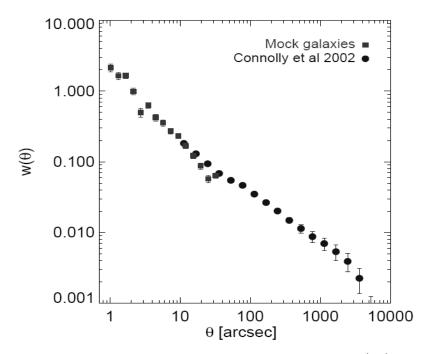


Tamás Budavári

Simulations

- Mock objects
 - With correct clustering
 - \Box U₀₁ values as properties

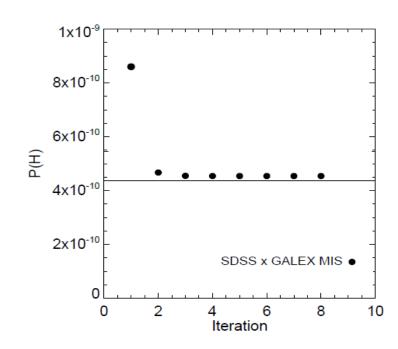
- Simulated sources
 - Subsets: N₁ N₂
 - Overlap: N_{*}



Simulations

- Mock objects
 - With correct clustering
 - \Box U₀₁ values as properties

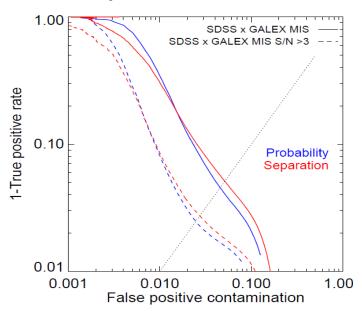
- Simulated sources
 - Subsets: N₁ N₂
 - Overlap: N_{*}



7/19/2012 7/19/2012

Simulations

Quality



Multiple matches

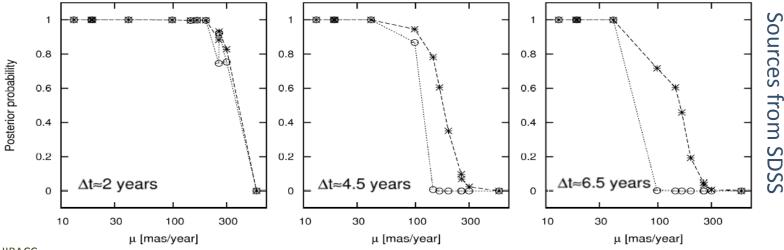
SDSS			
GALEX	1	2	Many
1	74.061 (75.870)	21.007 (18.595)	2.577 (2.469)
2	1.146 (2.253)	$1.006 \ (0.697)$	$0.188 \; (0.102)$
Many	$0.006\ (0.009)$	$0.007 \ (0.004)$	$0.002 \ (0.001)$

Explained by simple model of point sources!

Heinis, TB, Szalay (2009)

Proper Motion

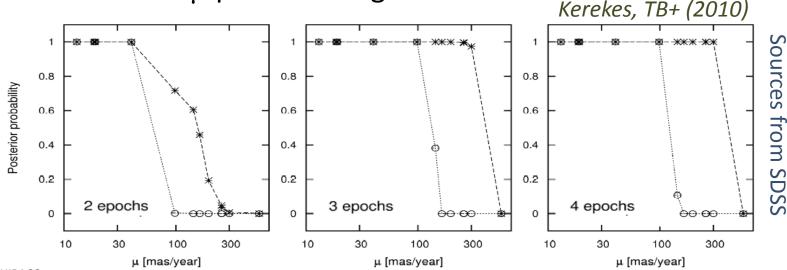
- Same hypotheses but different parameters
 - Just need μ prior to integrate



7/19/2012

Proper Motion

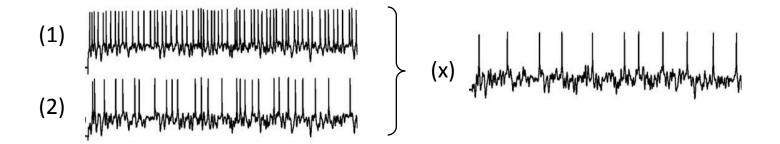
- Same hypotheses but different parameters
 - Just need μ prior to integrate



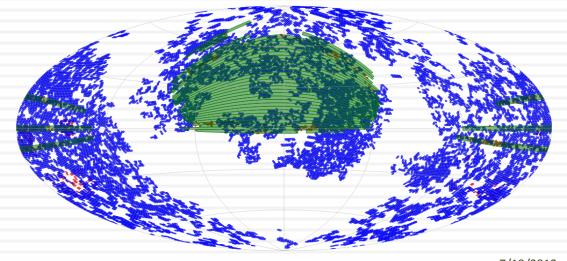
7/19/2012

Matching Events

- Streams of events in time and space
 - E.g., thresholded peaks in signal-to-noise



Dropouts from Sky Coverage

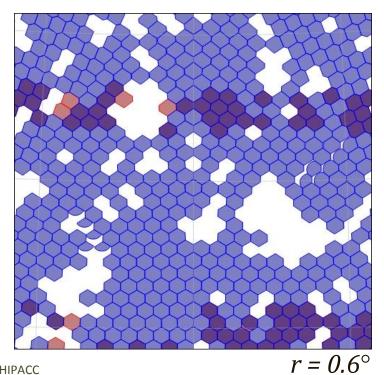


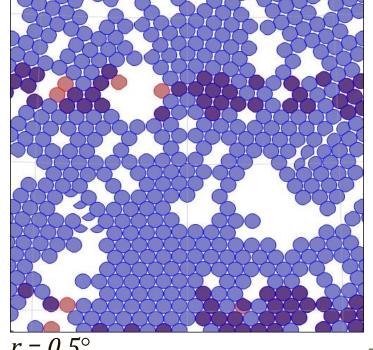
ISSAC at HIPACC

7/19/2012

Drawing with Equations

Tamás Budavári





 $r = 0.5^{\circ}$

ISSAC at HIPACC

TB, Szalay & Fekete (2010)

7/19/2012

Matching in Practice

Open SkyQuery

- Following our
 1st prototype
- Successful
- Not bayesian
- Limitations

SkyQuery – The 3rd Generation

Tamás Budavári

- Dynamic federation of astronomy databases
 - Query the collection as if they were one

- □ The 3rd gen tool coming this summer
 - Cluster of machines running partitioned jobs
 - Proper probabilistic exec with variable errors

Almost pure standard SQL

```
SELECT p.ObjID, p.RA, p.Dec,
       s.BestObjID, s.SpecObjID, s.RA, s.Dec
INTO xtest
FROM SDSSDR7:PhotoObjAll AS p
    CROSS JOIN SDSSDR7:SpecObjAll AS s
WHERE
    p.RA BETWEEN 0 AND 5
    AND p.Dec > -9999
    AND s.Dec > -9999
    AND s.RA > -9999
```

Almost pure standard SQL

```
SELECT p.ObjID, p.RA, p.Dec,
s.BestObjID, s.SpecObjID, s.RA, s.Dec
INTO xtest
FROM SDSSDR7:PhotoObjAll AS p
CROSS JOIN SDSSDR7:SpecObjAll AS s
```


WHERE

```
p.RA BETWEEN 0 AND 5
AND p.Dec > -9999
AND s.Dec > -9999
AND s.RA > -9999
```

Almost pure standard SQL

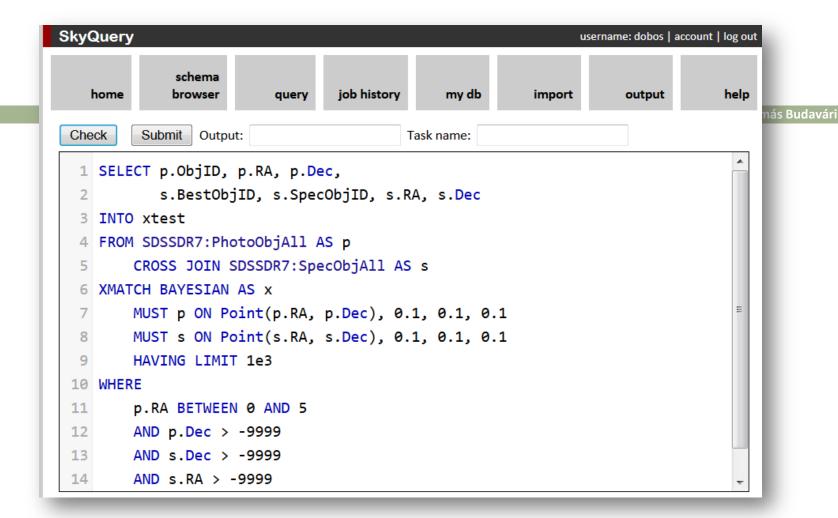
```
SELECT p.ObjID, p.RA, p.Dec,
       s.BestObjID, s.SpecObjID, s.RA, s.Dec
INTO xtest
FROM SDSSDR7:PhotoObjAll AS p
    CROSS JOIN SDSSDR7:SpecObjAll AS s
XMATCH BAYESTAN AS x
    MUST p ON Point(p.RA, p.Dec), 0.1, 0.1, 0.1
    MUST s ON Point(s.RA, s.Dec), 0.1, 0.1, 0.1
    HAVING LIMIT 1e3
WHERE
    p.RA BETWEEN 0 AND 5
    AND p.Dec > -9999
    AND s.Dec > -9999
    AND s.RA > -9999
```

Almost pure standard SQL

- Added XMATCH
 - Verifiable
 - Flexible

```
SELECT p.ObjID, p.RA, p.Dec,
       s.BestObjID, s.SpecObjID, s.RA, s.Dec
INTO xtest
FROM SDSSDR7:PhotoObjAll AS p
    CROSS JOIN SDSSDR7:SpecObjAll AS s
XMATCH BAYESTAN AS x
    MUST p ON Point(p.RA, p.Dec), 0.1, 0.1, 0.1
    MUST s ON Point(s.RA, s.Dec), 0.1, 0.1, 0.1
    HAVING LIMIT 1e3
WHERE
    p.RA BETWEEN 0 AND 5
    AND p.Dec > -9999
    AND s.Dec > -9999
    AND s.RA > -9999
```

7/19/2012 7/19/2012

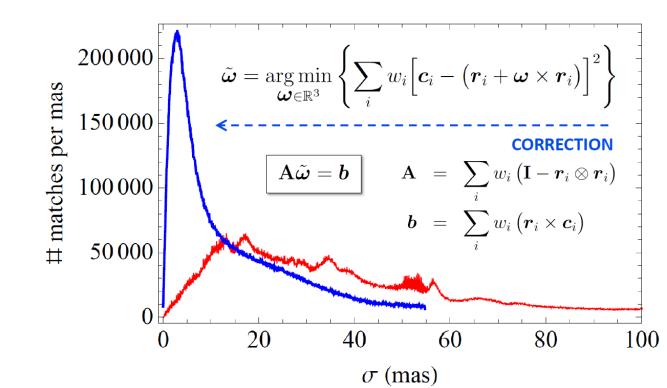


HST Crossmatch Catalog Brelease AT AAS

Tamás Budavári

SQL pipeline

- **Astrometric** correction
 - Subpixel precision

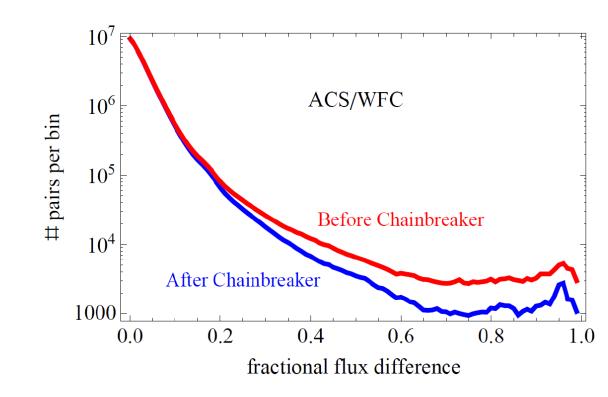


HST Crossmatch Catalog Brelease AT AAS

Tamás Budavári

- FoF groups
 - Possible chains

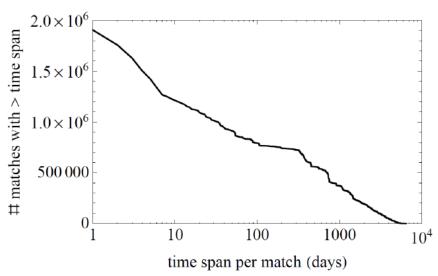
- Bayesian model selection
 - Chainbreaker

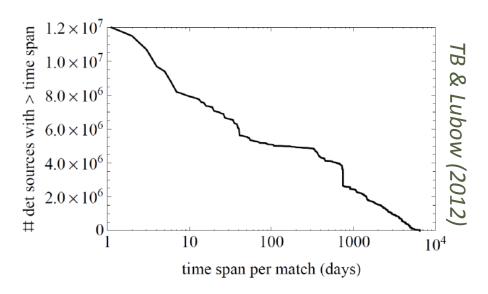


HST Crossmatch Catalog Brelease AT AAS

Tamás Budavári

Lots of matching sources during HST's long life

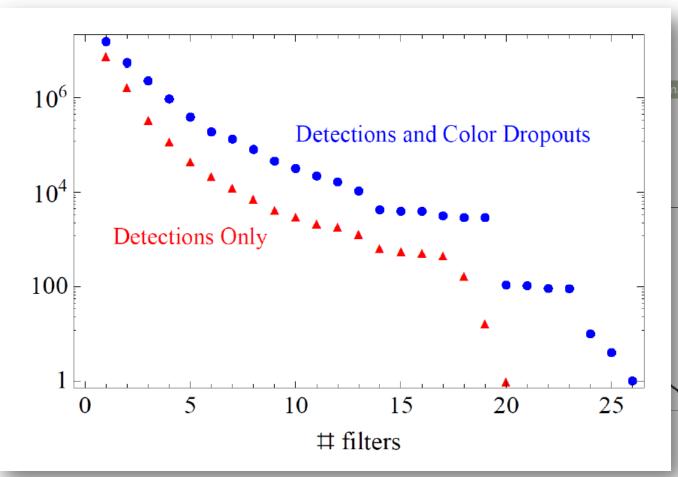




HST

Lots





nás Budavári

ISSAC at HIPACC

Zone Algorithm

- Constant Declination zones
 - Sort by R.A. within

- □ Fast SQL code
 - SDSS-GALEX in 1 hour
 - CPU limited!

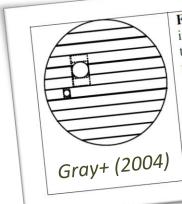


Figure 3: The division of the sphere into 12 zones (in practice there are thousands of zones). Two circular neighborhoods are shown, one inside one zone (minZone=maxZone) and another crossing 3 zones (minZone+2=maxZone.) The dotted boxes show how the ra filter and the dec filter further reduce the search. The ra filter needs to be "expanded" by 1/cos(abs(dec)).

Parallel on GPUs

- Recent Github release
 - Multi-GPU implementation
- □ Search in 5" great perf!
 - NVIDIA GTX 480 1.5GB
 - 29M×29M in 11 seconds
 - □ C2050 Teslas
 - 400M×150M in 3 minutes

```
C:\>CuXmatch.exe dr7.bin 29000000 dr7.bin 29000000 5 5 4
[dbg] n zones: 129600
[dat] 1
[tmr] Load: 12.776000
[tmr] Copy: 0.452000
[tmr] Sort: 2.605000
[tmr] Lmts: 0.000000
[tmr] Back: 0.499000
[tmr] Splt: 0.921000
[dat] 2
[tmr] Load: 10.296000
[tmr] Copy: 0.453000
[tmr] Sort: 2.823000
[tmr] Lmts: 0.000000
[tmr] Back: 0.499000
[tmr] Splt: 0.905000
[tmr] Cop2: 0.671000
[tmr] Mtch: 10.998000
[tmr] Ftch: 0.265000
[tmr] Main: 47.876000
[res]
587727177914515631 587727177914515631
587727177914515580 587727177914515580
587727177914515797 587727177914515797
587727177914581686 587727177914581686
```

7/19/2012 7/19/2012