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Time stepping

● An N-body system is Hamiltonian
● Invariant under time translation
● Phase space density preserved

● Preserve these properties in a numerical 
integration by Exactly integrating an 
Approximate Hamiltonian

● Operator Splitting: 1st applying part of a 
Hamiltonian, then applying the 2nd part is 
equivalent to an approximate Hamiltonian



  

Time Stepping

● Consider

● Where

● Hamilton's equations give:

●

●

● This is Leap Frog!

● Obeys a Hamiltonian: 

Saha & Tremaine 1992



  

Leapfrog vs. Runge Kutta



  

In a Rotating Frame



  

Comoving Equations of Motion

But these can be derived from a Hamiltonian:

Where p' = a2v'



  

Canonical Comoving Equations

● The two pieces of the Hamiltonian can be 
integrated to give:

●

●

● A single timestep is taken by applying



  

Hierarchical Timestepping

● Large dynamic range in density implies large 
range in timescales:

●

● Timesteps organized in power of 2 “rungs”



  

Symplectic Variable Timesteps?

● At a minimum, must be reversible
● Because of timestep decision, reversibility is 

expensive or impossible.
● Trial timesteps and implicit step choices
● Force splitting schemes

● At least minimize time asymmetries:
● Make timestep choice where the acceleration is 

calculated.

=> KDK scheme
● KDK more efficient and better momentum conserve.



  

Timestep Criteria

● EpsAccStep: dt ~ sqrt(softening/acceleration)
● DensityStep: dt ~ sqrt(1/density)

● GravStep: dt ~ sqrt(r
ij

3/(m
i
 + m

j
))

● Courant: smoothing/sound speed
● See M. Zemp et al 2007 for an “optimal 

criterion”



  

Gravitational Softening
● Recall: we are solving the CBE, and particles 

sample f(z).

●

● The standard sum is a Monte-Carlo integral.

● The 1/|x – x'| term is not well suited to this.

● Introduce softening to minimize <force error>

● Does not effect two body relaxation time!

● Too small: two body scattering

● Too large: lose structural detail

● Ultimately a computational cost decision



  

SPH advantages

● Naturally partners with a particle gravity code
● Arbitrary geometry
● Lagrangian
● Galilean invariant
● Less dissipative for density weighted quantities
● Fast
● Easy to implement
● Flexibility with Equations of State



  

Basic principles of SPH

● Model the fluid as a collection of elements 
represented by particles

● Move particles using Lagrangian forms of the 
fluid equations

● Assign thermodynamic properties to the 
particles.

● Some properties determined by local 
averages

● Use an interpolation method to get these 
averages from local particles.



  

Interpolation

● The interpolant of any function f(r) is:

● h is the smoothing length and determines the 
extent of the averaging volume.

● W is the smoothing kernel which satisfies:



  

Interpolation for finite points

● In general:



  

Calculating Gradients

● Integration by parts can move the derivative:

●

● Better accuracy is obtained with gradients of 
density weighted quantities:



  

The Weighting Function

● Requirements:
● Continuous 2nd derivatives
● Compact
● Symmetric

● Cubic Spline
● Symmetrize explicitly



  

SPH equations

● Density:

● Momentum

●

● Energy

● Alternatively: Entropy Equation (comparable 
performance)



  

Artificial Viscosity

● Momentum diffusion necessary to stabilize all 
numerical hydro formulations.



  

Artificial Viscosity & Diffusion

● All hydro codes introduce diffusion for stability
● SPH only has diffusion if explicitly added
● High Reynold numbers flows have turbulence 

below the resolution which can be modeled by 
diffusion (Smagorinsky 1963)



  

Bubble comparison

Wadsley et al 2008



  

Metal Diffusion

● Turbulence should also diffuse metals.
● For a scalar, A:

Shen, Wadsley & Stinson 2010



  

Metal distribution



  

Cooling

● Cooling timescales can be short compared to a 
dynamical time

● Implicit (stiff) solver for thermal energy, assume 
work and density are constant.

● Addition of non-equilibrium metal cooling:

Enhances low T cooling in the presence of UV



  

Metal Cooling



  

Parallel Architecture of GASOLINE

● Master layer: overall flow control; serial
● Processor Set Tree layer (PST): parallel glue
● Parallel KD layer (PKD):

● Access to particle/tree data
● Serial, runs simultaneously on all processors

● Machine Dependent layer (MDL):
● Interface to parallel primitives
● Implemented in MPI, Posix-threads, PVM, serial, ...



  

MDL

● Allows for easy portability/performance tuning
● Implements:

● Asynchronous remote procedure call
● Memory swapping
● Read-only and “combining” remote memory access
● Diagnostic utilities



  

MDL Cache

● Software cache of remote data
● Amortizes access of remote data
● Avoids excess memory use

● Read-only
● Combiner: commutative/associative operations

● e.g.: sum, maximum
● Necessary for symmetric SPH 



  

PST layer

● Balanced, binary tree of processors.
● Organizes parallel dispatch and top level tree



  

Domain Decomposition

● Domains are complete subtrees: domain tree 
coincides with top level of gravity tree

● ORB tree used to balance work
● “Root find” at each level to find split that 

balances work
● “Non-Active” particles split separately based on 

memory



  

Timestep Overview

● Adjust timesteps
● “Kick” velocities
● “Drift” Particles
● Domain Decompose
● Build tree, calculate Moments
● Calculate gravity forces
● Calculate SPH forces (predicted v & u needed)
● “Kick” velocities
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