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I. Hydro solvers
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- The Euler equations

- Systems of conservation laws

- The Riemann problem

- The Godunov Method

- Riemann solvers

- 2D Godunov schemes 

- Second-order scheme with MUSCL

- Slope limiters and TVD schemes

- 2D slope limiter.

Outline



A system of 3 conservation laws

The vector of conservative variables
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The Euler equations in conservative form



A non-linear system of PDE (quasi-linear form)

The vector of primitive variables

We restrict our analysis to perfect gases
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The Euler equations in primitive form
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The isothermal Euler equations

Conservative form with conservative variables

Primitive form with primitive variables

a is the isothermal sound speed



General system of conservation laws with F flux vector.

Examples:

1- Isothermal Euler equations 

2- Euler equation

3- Ideal MHD equations
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Systems of conservation laws



We define the Jacobian of the flux function as:

The system writes in the quasi-linear (non-conservative) form

We define the primitive variables

and the Jacobian of the transformation

The system writes in the primitive (non-conservative) form

The matrix A is obtained by

The system is hyperbolic if A or J have real eigenvalues.
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Primitive variables and quasi-linear form



Scalar (one variable) linear (u=constant) 

partial differential equation (PDE)

Initial conditions: 

Define the function:

Using the chain rule, we have:

    is a Riemann Invariant along the characteristic curves defined by
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The advection equation

x

t
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The isothermal wave equation

We linearize the isothermal Euler equation around some equilibrium state.

Using the system in primitive form, we get the linear system:

where the constant matrix has 2 real eigenvalues and 2 eigenvectors

The previous system is equivalent to 2 independent scalar linear PDEs.

         (        ) is a Riemann invariant along characteristic curves moving 
with velocity              (          ) 
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Linear Riemann problem for isothermal waves

Initial conditions are defined by 2 semi-infinite regions with pieceweise 
constant initial states                       and

x

t

Left state Right state

Mixed state

“Star” state is obtained using the 2 Riemann invariants.
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The adiabatic wave equation

We define the adiabatic sound speed:

The system is equivalent to the 3 independent scalar PDEs:

       ,          and         are 3 Riemann invariants along characteristic curves 
moving with velocity           ,            and     .
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Linear Riemann problem for adiabatic waves

Initial conditions are defined by 2 semi-infinite regions with pieceweise 
constant initial states                                  and                                 .

x

t

Left state Right state

Left “star” state: (-,0,+)=(R,L,L) and right “star” state: (-,0,+)=(R,R,L).

2 mixed states
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Non-linear case: shocks and the RH relations

x

t

x1 x2

t1

t2
St

Integral form of the conservation law

Rankine-Hugoniot relations: 

Bürger’s equation:                                                 gives 
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Riemann invariants for non-linear waves
Define the 3 differential forms:

These are Riemann invariants along the characteristic curves (u+a, u-a, u)

Exercise: using                                                        and the Euler system in 
primitive form, show that the previous forms are invariants along their 
characteristic curve.

Right-going waves satisfy                                                    0

Left-going waves satisfy                                                       0

Entropy waves satisfy                                                           0
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Non-linear case: rarefaction waves

The entropy is conserved across the fan

x

t

0 across the fan, which gives

Writing                               we get 
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The Sod shock tube
Analytical solution: we match the pressure and the velocity at the tip 
of the rarefaction wave with the pressure and velocity after the shock.
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- The Euler equations

- Systems of conservation laws

- The Riemann problem

- The Godunov Method

- Riemann solvers

- 2D Godunov schemes 

- Second-order scheme with MUSCL

- Slope limiters and TVD schemes

- 2D slope limiter.

Outline



HIPACC 2010 Romain Teyssier

The Godunov method
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Finite volume scheme

Finite volume approximation of the advection equation:

Use integral form of the conservation law:

Exact evolution of volume averaged quantities:

Time averaged flux function:
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Godunov scheme for the advection equation

 The time averaged flux function:

 is computed using the solution of the Riemann problem defined

 at cell interfaces with piecewise constant initial data.

x

 ui

 ui+1

For all t>0:

The Godunov scheme for the advection equation is identical to 
the upwind finite difference scheme.
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The time average flux function is 
computed using the self-similar 
solution of the inter-cell Riemann 
problem: 

Godunov scheme for hyperbolic systems
The system of conservation laws

is discretized using the following 
integral form: 

This defines the Godunov flux:

Advection: 1 wave, Euler: 3 waves, MHD: 7 waves

Piecewise constant 
initial data
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Riemann solvers

Exact Riemann solution is costly: involves Raphson-Newton 
iterations and complex non-linear functions.

Approximate Riemann solvers are more useful.

Two broad classes:

- Linear solvers

- HLL solvers
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Linear Riemann solvers

Define a reference state as the arithmetic average or the Roe average

Evaluate the Jacobian matrix at this reference state. 

Compute eigenvalues and (left and right) eigenvectors

Non-linear flux function with a linear diffusive term.

 where

The interface state is obtained by combining all upwind waves

A simple example, the upwind Riemann solver:
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Approximate the true Riemann fan by 2 waves and 1 intermediate state:

HLL Riemann solver

x

t

UL UR

U*

Compute U* using the integral form between SLt and SRt

Compute F* using the integral form between SLt and 0.
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Other HLL-type Riemann solvers

Lax-Friedrich Riemann solver:

HLLC Riemann solver: add a third wave for the contact (entropy) wave.

x

t

UL UR

U*
L

SL SR
S*

U*
R

See Toro (1997) for details.
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Sod test with the Godunov scheme 

Lax-Friedrich Riemann solver

128 cells

riemann=‘llf’
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Sod test with the Godunov scheme 

HLLC Riemann solver

128 cells

riemann=‘hllc’
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Sod test with the Godunov scheme 

Exact Riemann solver

128 cells

riemann=‘exact’
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Multidimensional Godunov schemes

2D Euler equations in integral (conservative) form

Flux functions are now time and space average.

2D Riemann problems interact along cell edges:

Even at first order, self-similarity does not apply to the 
flux functions anymore.

Predictor-corrector schemes ? 



HIPACC 2010 Romain Teyssier

Perform 1D Godunov scheme along each direction in sequence.

X step:

Y step:

Change direction at the next step using the same time step.
Compute Δt, X step, Y step, t=t+Δt Y step, X step t=t+Δt

Courant factor per direction: 

Courant condition:

Cost: 2 Riemann solves per time step.
Second order based on corresponding 1D higher order method.

A simple alternative: directional splitting

Used in the FLASH code: be careful with AMR !



Runge-Kutta scheme
Predictor step using the Godunov 
scheme and Δt/2.
Flux functions computed using 1D 
Riemann problem at time tn+1/2 in 
each normal direction.
4 Riemann solves per step.
Courant condition: 

Corner Transport Upwind
Predictor step in transverse direction 
only using the 1D Godunov scheme.
Flux functions computed using 1D 
Riemann problem at time tn+1/2 in 
each normal direction.
4 Riemann solves per step.
Courant condition:
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Various 2D unsplit schemes

Godunov scheme
No predictor step.
Flux functions computed using 1D 
Riemann problem at time tn in each 
normal direction.
2 Riemann solves per step.
Courant condition:

RAMSES

ATHENA
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Advection of a square with Godunov scheme
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Advection of a square with Godunov scheme
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Second-order Godunov scheme
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- The Euler equations

- Systems of conservation laws

- The Riemann problem

- The Godunov Method

- Riemann solvers

- 2D Godunov schemes 

- Second-order scheme with MUSCL

- Slope limiters and TVD schemes

- Characteristics tracing and 2D slopes.
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The time average flux function is 
computed using the self-similar 
solution of the inter-cell Riemann 
problem: 

Godunov scheme for hyperbolic systems
The system of conservation laws

is discretized using the following 
integral form: 

This defines the Godunov flux:

Advection: 1 wave, Euler: 3 waves, MHD: 7 waves

Piecewise constant 
initial data
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Higher Order Godunov schemes

Bram Van Leer

Godunov method is stable but very diffusive. It was 
abandoned for two decades, until…  
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Second Order Godunov scheme

x

 ui

 ui+1Piecewise linear 
approximation of the solution: 

The linear profile introduces a length scale: the 
Riemann solution is not self-similar anymore:

The flux function is approximated using a predictor-corrector scheme: 

The corrected Riemann solver has now predicted states as initial data: 
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Summary: the MUSCL scheme for systems

Compute second order predicted states using a Taylor expansion:

Update conservative variables using corrected Godunov fluxes 

{

{
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Monotonicity preserving schemes
We use the central finite difference approximation for the slope:

In this case, the solution is oscillatory, and therefore non physical.

Second order linear scheme.

 first 
order

 second 
order

Oscillations are due to the non monotonicity of the numerical scheme.

A scheme is monotonicity preserving if:

- No new local extrema are created in the solution

- Local minimum (maximum) non decreasing (increasing) function of time.

Godunov theorem: only first order linear schemes are monotonicity preserving ! 
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Slope limiters
Harten introduced the Total Variation of the numerical solution:

Harten’s theorem: a Total Variation Diminishing (TVD) scheme is 
monotonicity preserving. 

Design non-linear TVD second order scheme using slope limiters: 

 where the slope limiter is a non-linear function satisfying:
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No local extrema

We define 3 local slopes: left, right and central slopes

and

x

 ui

 ui+1

 ui-1

  New maximum !

For all slope limiters: 
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The minmod slope

x

 ui

 ui+1

 ui-1

Linear reconstruction is monotone at time tn

Minmod slope limiting is never truly second order !

Initial reconstructed solution must be monotonous.

slope_type=1
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The moncen slope

x

 ui

 ui+1

 ui-1

Extreme values must be bounded by the initial average states.

Initial reconstructed states must be bounded by the initial average states.

slope_type=2
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The superbee slope

Predicted states must be bounded by the initial average states.

TVD constraint is preserved by the Riemann solver.

The Courant factor now enters the slope definition.
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 The ultrabee slope

Use the final state to compute the slope limiter.

Upwind Total Variation constraint.

Strict Total Variation preserving limiter.

Final complete solution must be bounded by the initial average states.
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Summary: slope limiters

 first order

 minmod  moncen

 superbee  ultrabee

slope_type=0

slope_type=1 slope_type=2
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Summary: slope limiters

MinMod is the only monotone slope limiter before the Riemann solver !

Superbee and Ultrabee must not be used for non-linear systems !

MonCen can be used, but with care: the characteristics tracing method. 

x

 ui

 ui+1

The previous analysis is valid only for the advection equation.

Non-linear systems: the wave speeds depend on the initial states (L and R). 
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2D slope limiter for unsplit MUSCL scheme

Surech, Ambady, “Positivity Preserving Schemes in Multidimensions”, SIAM J. Sci. 
Comput., 22, 1184-1198 (2000).

If 1D slope limiters are used, 2D schemes may 
become oscillatory.

Predicted states involve 2D neighboring cells.

2D moncen slope: corner values must be 
bounded by the 8 neighboring initial values.

slope_type=3



HIPACC 2010 Romain Teyssier

Sod test with HLLC first order 

128 cells

slope_type=0
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Sod test with HLLC and MinMod 

128 cells

slope_type=1
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Sod test with HLLC and MonCen 

128 cells

slope_type=2
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Beyond second order Godunov schemes ?

Smooth regions of the flow
More efficient to go to higher order.
Spectral methods can show exponential convergence.
More flexible approaches: use ultra-high-order shock-
capturing schemes: 4th order scheme, ENO, WENO, 
discontinuous Galerkin and discontinuous element methods

Discontinuity in the flow
More efficient to refine the mesh, since higher order schemes 
drop to first order.
Adaptive Mesh Refinement is the most appealing approach.

What about the future ?
Combine the 2 approaches.
Usually referred to as “h-p adaptivity”.



HIPACC 2010 Romain Teyssier


