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- The Modified Equation

- Adaptive Mesh Refinement

- Grid refinement strategy

- Hydrodynamics and AMR

- Parallel computing and AMR

Outline



A system of 3 conservation laws

The vector of conservative variables
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The Euler equations in conservative form



Romain TeyssierHIPACC 2010

The time average flux function is 
computed using the self-similar 
solution of the inter-cell Riemann 
problem: 

Godunov scheme for hyperbolic systems
The system of conservation laws

is discretized using the following 
integral form: 

This defines the Godunov flux:

Advection: 1 wave, Euler: 3 waves, MHD: 7 waves

Piecewise constant 
initial data



Romain TeyssierHIPACC 2010

Upwind scheme for the advection equation

 a>0: use only upwind values, discard downwind variables

Taylor expansion up to second order:

Upwind scheme is stable if C<1, with

Modifie
d equatio

n
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2nd-order Godunov method: the MUSCL scheme

Compute second order predicted states using a Taylor expansion:

Update conservative variables using corrected Godunov fluxes 

{

{
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Modified equation for the second order scheme

Taylor expansion in space and time up to third order:

We obtain a dispersive term as leading-order error.

Von Neumann analysis says the scheme is stable for C<1.
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Adaptive Mesh Refinement
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Patch-based versus tree-based
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AMR codes in astrophysics

ENZO: Greg Bryan, Michael Norman, Tom Abel

ART: Andrey Kravtsov, Anatoly Klypin

RAMSES: Romain Teyssier

NIRVANA: Udo Ziegler

AMRVAC: Gabor Thot and Rony Keppens

FLASH: The Flash group (PARAMESH lib)

ORION: Richard Klein, Chris McKee, Phil Colella

PLUTO: Andrea Mignone (CHOMBO lib, Phil Colella)

CHARM: Francesco Miniati (CHOMBO lib, Phil Colella)

ASTROBear: Adam Frank

and others !
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Cell-centered variables are updated level by level using linked lists.

Cost = 2 integer per cell.

Optimize mesh adaptation to complex flow geometries, but CPU overhead 
compared to unigrid can be as large as 50%.

2 type of cell:    - “leaf” or active cell

- “split” or inactive cell

RAMSES: a fully threaded graded octree

Fully Threaded Tree (Khokhlov 98).
Cartesian mesh refined on a cell by cell basis.
octs: small grid of 8 cells
Pointers (arrays of index)
• 1 parent cell
• 6 neighboring parent cells
• 8 children octs
• 2 linked list indices
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Step 1: mesh consistency

if a split cell contains at least one split or 
marked cell, then mark the cell with flag = 1 
and mark its 26 neighbors

Step 2: physical criteria

quasi-Lagrangian evolution, Jeans mass

geometrical constraints (zoom)

Truncation errors, density gradients…

Step 3: mesh smoothing

apply a dilatation operator (mathematical 
morphology) to regions marked for 
refinement ! convex hull

Compute the refinement map: flag = 0 or 1

Refinement rules for graded octrees
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Refinement strategies

- Refinement based on truncation errors estimate (using the Modified 
Equation).

- Refinement based on gradient of variables: !x/x < 1%

- Refinement based on source terms (Peclet number should be less than 
one): Jeans length or cooling length.

- Refinement based on the mass (quasi-Lagrangian).

- Refinement based on a color variable (geometrical criterion).

err_grad_d=0.01, err_grad_p=0.01

jeans_refine=4,4,8,8

mass_sph=1e-4

ivar_refine=6
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Berger & Oliger (84), Berger & Collela (89)

Prolongation (interpolation) to finer levels

- fill buffer cells (boundary conditions)

- create new cells (refinements)

Restriction (averaging) to coarser levels

- destroy old cells (de-refinements)

Flux correction at level boundary

Careful choice of interpolation variables (conservative or not ?)

Several interpolation strategies (with RT P = I) :

- straight injection

- tri-linear, tri-parabolic reconstruction

Godunov schemes and AMR

interpol_var=0, 1

interpol_type=0, 1, 2, 3
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Godunov method with Constrained Transport

Similar to potential vector methods (Yee 1966; Dorfi 1986; Evans & Hawley 1988).

The induction equation in integral form suggests a surface-average form: 

(Stokes theorem)

The magnetic field is face-centred while Euler-type variables are cell-centred 
(staggered mesh approach).
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CT: exact div B preserving scheme

Surface-averaged magnetic fields are updated conservatively:

using time-averaged electric fields defined at cell edge centres:

The total flux (div B) across each cell bounding surface vanishes exactly.



« Divergence-free preserving » restriction and prolongation operators
Balsara (2001) Toth & Roe (2002)

Flux conserving interpolation and averaging within cell faces using TVD slopes in 2
dimensions

EMF correction for conservative update at coarse-fine boundaries

?

?
? ?
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Higher-order schemes and AMR

For a fully second-order MUSCL scheme for MHD with AMR, see 
Teyssier et al. 2006; Fromang et al. 2006.
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Godunov schemes and AMR

Buffer cells provide boundary conditions for the underlying numerical scheme. 
The number of required buffer cells depends on the kernel of the chosen 
numerical method. The kernel is the ensemble of cells on the grid on which 
the solution depends.

- First Order Godunov: 1 cell in each direction

- Second order MUSCL: 2 cells in each direction

- Runge-Kutta or PPM: 3 cells in each direction

Simple octree AMR requires 2 cells maximum. For higher-order schemes 
(WENO), we need to have a different data structure (patch-based AMR or 
augmented octree AMR). 

More on buffer cells
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Time integration: single time step or recursive sub-cycling

- froze coarse level during fine level solves (one order of accuracy down !)

- average fluxes in time at coarse fine boundaries

Adaptive Time Stepping

ART and RAMSES: update fine level first

ENZO: update coarse level first
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The AMR catastrophe

First order scheme: 

Second order scheme:

At level boundary, we loose one order of accuracy in the modified equation.

First order scheme: the AMR extension is not consistent at level boundary.

Second order scheme: for "=1.5, AMR is unstable at level boundary.

Solutions: 1- refine gradients, 2- enforce first order, 3- add artificial diffusion

Assume a and C>0.
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Shock wave propagating through level boundary
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Sod test with HLLC first order 

128 cells
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Sod test with HLLC and MonCen 

128 cells
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Sod test with HLLC and AMR 

153 cells
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Complex geometry with AMR
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Particle-Mesh on AMR grids:
Cloud size equal to the local mesh 
spacing

Poisson solver on the AMR grid
Multigrid or Conjugate Gradient
Interpolation to get Dirichlet boundary 
conditions (one way interface)

Cosmology with AMR

Quasi-Lagrangian mesh evolution: 
roughly constant number of particles 
per cell

Trigger new refinement when n > 
10-40 particles. The fractal dimension 
is close to 1.5 at large scale 
(filaments) and is less than 1 at small 
scales (clumps).



Romain TeyssierHIPACC 2010

Code is freely available http://irfu.cea.fr/Projets/Site_ramses

RAMSES: a parallel graded octree AMR

http://irfu.cea.fr/Projets/Site_ramses
http://irfu.cea.fr/Projets/Site_ramses
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Parallel computing using the MPI library with a 
domain decomposition based on the Peano-Hilbert 
curve.

Algorithm inspired by gravity solvers (tree codes). 
Use locally essential tree.

Tested and operational up to 20 000 cores.
Scaling depends on problem size and complexity.

Domain decomposition for parallel computing

Salmon, J.K. and Warren, M.S., "Parallel out-of-core 
methods for N-body simulation", In Eighth SIAM 
Conference on Parallel Processing for Scientific Computing, 
SIAM,1997.

Peter MacNeice, Kevin M. Olsonb, Clark Mobarryc, 
Rosalinda de Fainchteind and Charles Packer, 
« PARAMESH: A parallel adaptive mesh refinement 
community toolkit, », 2000, Computer Physics 
Communications, 126, 3.
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Domain decomposition 
over 3 processors

Locally essential tree
in processor #2

Locally essential tree
in processor #1

Locally essential tree
in processor #3

Salmon 90, 
Warren 92, 
Dubinski 96

Each processor octree is 
surrounded by ghost cells 
(local copy of distant 
processor octrees) so that 
the resulting local octree 
contains all the necessary 
information.

Locally essential trees
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Dynamic partitioning in RAMSES

Several cell ordering methods:
1- column, row or plane major
2- Hilbert or Morton
3- User defined (angular, column+Hilbert…)

Dynamic partioning is performed every N steps by sorting 
each cell along chosen ordering and redistributing the mesh 
across processors. Usually, a good choice is N=10 (10% 
overhead).

nremap=10



Romain TeyssierHIPACC 2010

Column major Angular

Hilbert

Is there an optimal load balancing strategy ?
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Is there an optimal load balancing strategy ?

Recursive bisection

Hilbert ordering

Angular ordering
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Scaling properties depends on problem size

Current bottleneck: adaptive time stepping.
Domain decomposition performed globally, 
computations performed on a level by level basis

For a 1 million particle zoom-in simulation

Strong scaling Weak scaling
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Conclusion

- With AMR, one can minimize numerical diffusion and obtain very 
accurate solutions.

- AMR is efficient only if the fractal dimension of the grid is significantly 
smaller than 3.

- Refinement strategy is the key.

- At coarse-fine boundaries, problems arise (stationary waves).

- Parallel computing with dynamically adapted domain decomposition

- Current limitations in strong scaling are due to adaptive time stepping

- Possible solutions: 

- OpenMP-MPI hybrid programming

- Domain decomposition per level and per species


