Beat down randomness/noise

Beat down randomness/noise

Beat down randomness/noise

- Beat down randomness/noise
- Dynamic range
 - Cosmological:

- Beat down randomness/noise
- Dynamic range
 - Cosmological:
 - 'Re-simulation' Techniques:

T = 0 Myr

- Beat down randomness/noise
- Dynamic range
- Parameter Studies

Gas-Poor vs Gas-Rich Merger

- Beat down randomness/noise
- Dynamic range
- Parameter Studies
 - "Known Unknowns" (e.g. dynamics)

"known unknowns"

- Beat down randomness/noise
- Dynamic range
- Parameter Studies
 - "Known Unknowns" (e.g. dynamics)
 - "Unknown Unknowns" (e.g. feedback)

"unknown unknowns"

UTIKTIOWIT UTIKTIOWITS									
gas-fraction 10% egs-factor 1.000	ges-fraction 20% egs-factor 1.000	ges-frection 40% egs-factor 1.000	gas-fraction 60% egs-factor 1.000	gas-factor 1.000	gas-fraction 99% egs-factor 1.000				
gas frachen 10%	gas trachon 20%	gas frachon 40%	gas frachen 60°8	gas-trachon BU'S	gas frachen 99%				
egs-factor 0 500	egs-factor (I 500)	egs-factor 0.500	egs factor 0 500	egs-factor 0 500	egs-factor 0 500				
ges-fraction 10%	gas-fraction 20%	gas-fraction 40%	gas-fraction 60%	gas-haction 80%	gas-fraction 99%				
ege-factor 0.250	egs-factor 0.250	ege-factor 0.250	egs-factor 0.250	egs-factor 0.250	egs-factor 0.250				
ges-factor 0.125	ges-fraction 20% egs-factor 0.125	ges-fraction 40% egs-factor 0.125	gas-fraction 60% egs-factor 0.125	gas-fraction 80% egs-factor 0.125	gas-fraction 99% egs-factor 0.125				
egs-factor 0 050	gas-fraction 20%	gas fraction 40%	gas faction 60%	gas-traction BU% eqs-traction 0 050	gas fraction 99% egs-factor (I 050				

- Cosmological Simulations
- 'Uniform'

- Cosmological Simulations
 - Enough dynamic range?
 - What if it's wrong?
 - Skew weighting in fits?
 - How do you define quantities?
 - Galaxy mass?
 - Merger mass ratio?
 - Gas fraction?

2 kpc

- 'Uniform'
 - What does that mean?
 - Where do you cut off?
 - How densely do you need to sample?
 - How do you compare to observations?

Low-Res to High?

Low-Res to High?

Ok, so you have your simulations... now what?

Define robust quantities:

- When is the merger?
- What are the gas fractions?
- Mass ratio: when? what? how?
- What do you define a 'starburst' relative to?

Look for what controls the outcomes:

1000 to (Myr) 100 $L_{peak} \sim 10^{10} L_{\odot}$ Defining 'typical': 10 1000 dt_a / dlog(L) (Myr) 100 10 10⁹ 10¹⁰ 10⁸ Limiting Bolometric Luminosity (L_®)

1000 to (Myr) 100 $L_{peak} \sim 10^{10} L_{\odot}$ Defining 'typical': 10 1000 dt_a / dlog(L) (Myr) 100 10 10⁹ 10¹⁰ 10⁸ Limiting Bolometric Luminosity (L_®) Defining 'typical':

Defining 'typical':

So we define something... How do you 'fit' it?

Even reduced to one point per simulation:

Even reduced to one point per simulation:

- Priors

- What you will compare to

Summary

- Lots of for large simulation 'surveys'
- Measure twice, simulate once:
 - think carefully about how to sample
 - if you're going to iterate, be careful with res.
- Try to understand the parameters that matter
- Don't just plunk everything down!
 - know the observations you're comparing with
 - construct appropriate sub-samples: priors matched
 - try to get as close as possible to observable quantities

