
MPI A.Klypin

• MPI tasks

• Simple Example

• Collective communications

• Point-to-Point Communications

 MPI

• The same code is run on many processors

• Each MPI task can use many OpenMP threads. So, a task is not
necessarily mapped on a core or a processor, but often it does.

• After initialization each MPI task gets its unique id (rank)

• All MPI tasks are equal. For programming purposes it is
convenient to name the rank=0 task as root and use it differently.

• Exchange of data between tasks is done by library calls.

• Semantics for Fortran and C are very similar.

• Root (and some other tasks) can be allocated to different
compute nodes with larger memory.

• Submit a PBS script to a queue. The script gives details of your
job and has a line mpiexec -np NNN mycode.exe (or mpirun)
where -np NNN specifies the number of MPI tasks.

Simple Example

https://computing.llnl.gov/tutorials/mpi/#Getting_Started

https://computing.llnl.gov/tutorials/mpi/#Getting_Started
https://computing.llnl.gov/tutorials/mpi/#Getting_Started

• Collective communication must involve all processes
• Types of communications:

• Synchronization
• Data transfer : broadcast, scatter gather, all-to-all
• Collective computation: (reductions) - one member of the group collects data
from the other members and performs an operation (min, max, add, multiply,
etc.) on that data.

Collective Communications

https://computing.llnl.gov/tutorials/mpi/#Getting_Started

• One task reads input from screen and distributes it to all others

https://computing.llnl.gov/tutorials/mpi/#Getting_Started
https://computing.llnl.gov/tutorials/mpi/#Getting_Started

Simple Example: matrix transposition

Three-dimensional matrix
A(Nrow,Nrow,Nrow) is split such that each
task k has its one page G(:,:) = A(:,:,k)
After transposition Gb(:,:) = A(k;:,:)

MPI_AlltoALL
https://computing.llnl.gov/tutorials/mpi/#Getting_Started

sendbuf = starting address of send buffer
recvbuf = address of receive buffer
sebdcnt = number of elements send to each process
recvcnt = number of elements received

j-th block from process i is received by
process j and placed in the i-th block of
recvbuf

https://computing.llnl.gov/tutorials/mpi/#Getting_Started
https://computing.llnl.gov/tutorials/mpi/#Getting_Started

MPI_Scatter: root distributes data

http://www.mpi-forum.org/docs/mpi-11-html/node72.html

http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html

Root gathers data from other tasks

MPI_SEND: send message to
task dest

MPI_RECV: receive message
from task dest

Point-to-Point communications

Example of Point-to-Point communications

