# The Effect of Improved Feedback Recipes on a GASOLINE Galaxy Simulation

Jacqueline McCleary
HIPACC Summer School 2010

# Cosmological Galaxy Simulations in GASOLINE



### What's New in the Newest Run?

- Increased N<sub>p</sub> so better mass/spatial res.
- Metal line cooling
- Improved SF Recipe:
  - Increase density requirement, lower max T
  - Increase SF efficiency C\* locally
- Stronger Feedback:
  - Energy injection into ISM more efficient, disrupts star formation globally
- Stars form in "star forming regions" in disk, don't just form in bulge

# So... What happened? Did these refinements generate more realistic galaxies?

#### Med-Res Run





#### Hi-Res Run



With improved recipe, stars form in localized "star forming regions"!

# Bulge/Disk Ratio



### Gas-to-Dust vs. Mass



Baldry, I. K., Glazebrook, K., & Driver, S. P. (2008)

## **Rotation Curve**



# Baryonic Tully-Fisher



# **Improved Dust**



#### Conclusions

With new and improved SF/SN recipe, h603 has:

- Higher gas-to-star ratio
- Shallower DM profile
- Bulge-to-disk ratio lowered
- Dust content in line with what's expected for a galaxy of that mass

All in all, a better match to observations

#### References

- F. Governato et al. 2010, *Nature*, 463, 203L
- Baldry, I. K., Glazebrook, K., & Driver, S. P. 2008, MNRAS, 388, 945
- Sunrise Documentation: http://code.google.com/p/sunrise/w/list
- McGaugh, S. 2009, in *Extreme Star Formation in Dwarf Galaxies* (USA: Ann Arbor, MI), http://www.astro.lsa.umich.edu/~ognedin/dwarf2009/talks/.

#### Acknowledgements:

Thanks to F. Governato (obviously),

P. Jonsson, and L. Pope