for movies, please see: http://users.obs.carnegiescience.edu/tcox/

1

2010 HIPACC Astro-Computing Summer School

Galaxy Simulations Using the N-Body/SPH code GADGET

T.J. Cox (Carnegie Observatories)

Outline

- I. Who am I and what am I doing here? My perspective, my science, and where my focus will be this week
- 2. An overview of GADGET projects (+other practical I hope information)
- 3. A brief overview of GADGET
- 4. Adding "Astrophysics" to GADGET
- 5. Loose Ends ... data structures, analysis, and visualization (w/ P. Hopkins)
- 6. What's next? (higher resolution, new models, and Arepo: the next generation of code)

Hi, my name is ..

Who am I and what am I doing here?

- T.J. Cox (Ph.D., UC Santa Cruz, post-docs at CfA and Carnegie Observatories)
- ~10 years experience using Gadget (every version)
- I am a user of Gadget, and had no part in designing it, building it, or upgrading it.
- >65 publications
- Some of my scientific interests ... simulations of idealized galaxy models, not cosmological simulations! More about this in a minute....

In my opinion, unless you are part cyborg (some of you may be - if so, this will certainly help you in your future research endeavors), it is unrealistic, not very feasible, and not practical to build your own simulation code.

With the abundance of publically available, very powerful, parallelized codes, one can very quickly learn to do cutting-edge research which addresses many of the outstanding questions in galaxy formation.

My goal for this week: to give you the knowledge necessary to use (compile, run, trouble-shoot, analyze) Gadget as a tool to perform publicationquality simulations and thus study relevant and interesting scientific questions. And, ideally, the ability to modify Gadget in novel ways.

My Science

Idealized simulations of galaxy formation and evolution as opposed to cosmological simulations

Galaxy Formation: The Challenge

A well constructed numerical problem with very well known initial conditions.

Spiral Galaxy M81

My Science

Idealized simulations of galaxy formation and evolution as opposed to cosmological simulations

Hierarchical Formation of Galaxies

* The merger hypothesis (Toomre 1977) has gained traction as a result of the notion that structure grows hierachically, i.e. from the "bottom-up."

* The prevailing idea for the formation of galaxies is that the characteristics of individual galaxies are determined by their (hierarchical) merger history.

Wechsler et al. 2002 (but see also Lacey & Cole, Fakhouri & Ma, etc.)

Idealized Models

N-body representation of a galaxy

baryons:

* stellar disk (collisionless, mass, exponential profile, thickness, stability)

* stellar bulge (collisionless, mass, Hernquist 1990 profile)

* gaseous disk (SPH, mass, various profiles, temperature)

* gaseous halo (SPH, mass, profile,

temperature)

Idealized Models

** the cosmological and idealized approaches are very complimentary **

blue = projected gas density color = projected stellar density

Merger-induced Activity

Idealized simulations of galaxy mergers are a good way to study how mergerinduced star formation depends on interacting galaxy parameters or how the inter-stellar medium is treated.

Merger Remnants

Proposed Chronology of a Galaxy Merger

0.00 Gyr

Possible Projects

(see triton;/home/hipacc-5)

- I. Assemble an isolated disk galaxy (or many of them) and assess its stability
 - I.I. Determine the fastest combination of compiler (plus any optimizations) and communication protocol
 - I.2. Use an alternate galaxy generation code
- 2. Merge two disk galaxies and attempt to match an observed system

2.1. Use Sunrise (next week's lectures) to make mock images of the above

- 3. Modify GADGET (rSPH, Abel next lecture; shock-SF, Barnes, etc.) and test what affect this has.
- 4. Compare results from two (or more or <u>all</u>) codes.
- 5. or anything else you can think of ...

* MakeDiskGalaxy and MakeHubbleType both use the methods introduced by Hernquist (1993) and extended by Springel et al. (1999, 2000, 2005):

Dark matter:

 $\rho_{\rm dm}(r) = \frac{M_{\rm dm}}{2\pi} \frac{a}{r(r+a)^3}$

Hernquist or NFW profile

Stars in the disk:

 $\Sigma_{\star}(r) = \frac{M_{\star}}{2\pi h^2} \exp(-r/h)$

"Isothermal sheet" with exponential profile

$$\rho_{\star}(R,z) = \frac{M_{\star}}{4\pi z_0 h^2} \operatorname{sech}^2\left(\frac{z}{2 z_0}\right) \exp\left(-\frac{R}{h}\right)$$

10

10⁵

10⁴

²¹⁰ d/d

 10^{2}

10¹

 10°

0.01

Stars in the bulge: $ho_{\rm b}(r) = {M_{\rm b}\over 2\pi} {b\over r(r+b)^3}$

Disk scale length h determined by spin parameter of halo.

NFW

1.00

dark matter profile

Bulge scale length b can be set to a fraction of the disk scale-length h.

Gas in the disk:

$$\Sigma_{\rm gas}(r) = \frac{M_{\rm gas}}{2\pi h^2} \exp(-r/h)$$

Vertical structure given by hydrostatic equilibrium. Depends on the equation of state of the gas.

$$-\frac{1}{\rho_{\rm g}}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z} = 0$$

0.10

r / r200

* MakeDiskGalaxy and MakeHubbleType both use the methods introduced by Hernquist (1993) and extended by Springel et al. (1999, 2000, 2005):

We assume that the **velocity distribution function** of dark matter and stars can be approximated everywhere by a **triaxial Gaussian**.

Further, we assume axisymmetry, and that the distribution function depends only on E and L_z

Then cross-moments vanish:

$$egin{aligned} &\langle v_R v_z
angle &= \langle v_z v_\phi
angle &= \langle v_R v_\phi
angle &= 0 \ &\langle v_R
angle &= \langle v_z
angle &= 0 \end{aligned}$$

The radial and vertical moments are given by:

$$\left\langle v_z^2 \right\rangle = \left\langle v_R^2 \right\rangle = \frac{1}{\rho} \int_z^\infty \rho(z', R) \frac{\partial \Phi}{\partial z'} \, \mathrm{d}z'$$

The azimuthal dispersion fulfills a separate equation:

$$\left\langle v_{\phi}^2 \right\rangle = \left\langle v_R^2 \right\rangle + \frac{R}{\rho} \frac{\partial \left(\rho \left\langle v_R^2 \right\rangle\right)}{\partial R} + v_c^2 \quad \begin{array}{c} \text{Circular} \\ \text{velocity:} \end{array} \quad v_c^2 \equiv R \frac{\partial \Phi}{\partial R} \end{array}$$

A remaining freedom lies in the azimuthal streaming $\langle v_{\phi} \rangle$, which is not determined by the above assumptions. For the dark matter, it can be set to zero, or to a value corresponding to a prescribed spin.

$$\sigma_{\phi}^2 = \left\langle v_{\phi}^2 \right\rangle - \left\langle v_{\phi} \right\rangle^2$$

Note: For the stellar disk, we instead use the epicycle theory to relate radial and vertical dispersions.

* MakeDiskGalaxy and MakeHubbleType both use the methods introduced by Hernquist (1993) and extended by Springel et al. (1999, 2000, 2005):

Note: Other methods exist, see, e.g., Barnes & Hibbard (2010), McMillian & Dehnen (2007), Kazantzidis & Magorrian (2004), or the GalactICS code of Dubinski & Kuijken (1995)

* MakeDiskGalaxy:

\langle	OutputDir OutputFile	./ Sb.dat		% Output directory % Filename of generated initial conditions	Outpi Gadge
	CC	9.0	% n	ato concentration	
	V200	160.0	% c	ircular velocity v_200 (in km/sec)	
	LAMBDA	0.05	% s	pin parameter	
	MD	0.03	% d	isk mass fraction	
	MB	0.02	% b	ulge mass fraction	
	мвн	0.00001	% b % h % i	lack hole mass fraction. If zero, no black ole is generated, otherwise one at the centre s added.	
	JD	0.03	% d	isk spin fraction, typically chosen equal to MD	
	GasEraction	0.15	% r	elative content of aas in the disk, the rest is stars	
	DiskHeight	0.2	% +	hickness of stellar disk in units of radial scale length	
	BulgeSize	0.3	% b	ulge scale length in units of disk scale length	
	N_HALO	975000	% de	sired number of particles in dark halo	
	N_DISK	165000	% d	esired number of collisionless particles in disk	
	N_GAS	30000	% n	umber of gas particles in disk	
	N_BULGE	130000	% n	umber of bulge particles	
	HI_GasMassFr HI_GasDiskSc disk MaxCasDiskHa	action aleLength	0.0 6	% mass of extended, flat HI disk in terms of the total % scale length of extended gas disk in terms of scale l	gas mass length of the
	MUXGUSDISKHE	lgnt	1.0	% to prevent too big flaring of isothermal outer gas an	LSK
	RadialDisper	sionFactor	1.0	% applies to stellar disk: Gives the radial % dispersion in units of the z-dispersion	
	MaxSfrTimesc	alo 1	5	% Cas consumption timescale (multi-phase model)	
	FactorSN	.ule 4. 0	J 1	% heta mass fraction of massive stars (multi-phase model)	del)
	FactorEVP	30	- 00	% A 0, evaporation parameter (multi-phase model)	
	TempSupernov	ra 3e	+08	% T_SN, effective "supernova temperature", sets feedback	k energy (multi-
	phase model)				55 (
	TempClouds	10	00	% temperature of cold clouds (multi-phase model)	
	FactorForSof	terEQS 0.	25	% Can be used to make the equation of state % softer. For 1.0, the multiphase model is	
				% used. while for 0.0 isothermal at 10^4 K is	
				% assumed. Intermediate values interpolate % linearly between the two pressures.	
				% Brants additions	
	REDSHIFT	0.	0	% redshift to scale galaxy properties to	
	Omega_m0	0.	3	% Omega_m	
	Omega_L0	0.	7	% Omega_L	

utput file! The ICs that will be read by adget.

* MakeDiskGalaxy:

	OutputDir OutputFile	./ Sb.da	t	% Output directory % Filename of generated initial conditions	
\langle	CC V200 LAMBDA MD MB	9.0 160.0 0.05 0.03 0.02	% h % c % s % d % b	alo concentration ircular velocity v_200 (in km/sec) pin parameter isk mass fraction ulge mass fraction	Basic Mo, M
	МВН	0.000	01 % b % h % i	lack hole mass fraction. If zero, no black ole is generated, otherwise one at the centre s added.	
	JD	0.03	% d	isk spin fraction, typically chosen equal to MD	
	GasFraction DiskHeight BulgeSize	0.15 0.2 0.3	% r % t % b	elative content of gas in the disk, the rest is stars hickness of stellar disk in units of radial scale length ulge scale length in units of disk scale length	
	N_HALO N_DISK N_GAS N_BULGE	97500 16500 30000 13000	0 % de 0 % d % n 0 % n	sired number of particles in dark halo esired number of collisionless particles in disk umber of gas particles in disk umber of bulge particles	
	HI_GasMassFr HI_GasDiskSc disk MaxGasDiskHe	action aleLengt ight	0.0 h 6	% mass of extended, flat HI disk in terms of the total % scale length of extended gas disk in terms of scale	gas mass length of the
	RadialDisper	sionFact	or 1.0	% applies to stellar disk: Gives the radial % dispersion in units of the z-dispersion	
	MaxSfrTimesc FactorSN FactorEVP TempSupernov phase model) TempClouds	ale	4.5 0.1 3000 3e+08 1000	<pre>% Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase mo % A_0, evaporation parameter (multi-phase model) % T_SN, effective "supernova temperature",sets feedbac % temperature of cold clouds (multi-phase model)</pre>	del) k energy (multi-
	FactorForSof	terEQS	0.25	% Can be used to make the equation of state % softer. For 1.0, the multiphase model is % used, while for 0.0 isothermal at 10^4 K is % assumed. Intermediate values interpolate % linearly between the two pressures.	
	REDSHIFT Omega_m0 Omega_L0		0.0 0.3 0.7	% Brants additions % redshift to scale galaxy properties to % Omega_m % Omega_L	

Basic halo, disk, and bulge parameters a la Mo, Mao, & White (1998)

* MakeDiskGalaxy:

OutputDir OutputFile	./ Sh.d	1 +	% Output directory % Filename of generated initial conditions
	50.00		% rechange of generated interat conditions
СС	9.0	% h	alo concentration
V200	160.0	% c	ircular velocity v_200 (in km/sec)
LAMBDA	0.05	% s	pin parameter
MD	0.03	% d	lisk mass fraction
MB	0.02	% b	ulge mass fraction
MBH	0.00	001 % b	lack hole mass fraction. If zero, no black
		% h % i	ole is generated, otherwise one at the centre s added.
JD	0.03	% d	lisk spin fraction, typically chosen equal to MD
CasEraction	0 15	% r	pelative content of ags in the disk, the rest is stars
DiskHeight	0.13	% F	hickness of stellar disk in units of radial scale length
BulgeSize	0.3	% b	ulge scale length in units of disk scale length
N HALO	9750	00 % de	sired number of particles in dark halo
N_DISK	16500	00 % d	lesired number of collisionless particles in disk
N_GAS	3000	0 % n	umber of gas particles in disk
N_BULGE	13000	00 % n	umber of bulge purcicles
MaxGasDiskHe	ight sionFact	1.0	% to prevent too big flaring of isothermal outer gas disk % applies to stellar disk: Gives the radial
un un bisper			% dispersion in units of the z-dispersion
MaxSfrTimesc	ale	4.5	% Gas consumption timescale (multi-phase model)
FactorSN		0.1	% beta, mass fraction of massive stars (multi-phase model)
FactorEVP		3000	% A_0, evaporation parameter (multi-phase model)
TempSupernov	а	3e+08	% T_SN, effective "supernova temperature",sets feedback energy (multi-
TempClouds		1000	% temperature of cold clouds (multi-phase model)
FactorForSof	terEQS	0.25	% Can be used to make the equation of state
			% softer. For 1.0, the multiphase model is
			% used, while for 0.0 isothermal at 10^4 K is
			% assumed. Intermediate values interpolate % linearly between the two pressures.
DEDCUTET		0.0	% Brants additions
KED2H1F1		0.0	% reasnift to scale galaxy properties to
		0.5 0.7	
Jillega_LØ		0.7	[™] Omega_r

Structural parameters of the disk and bulge.

The number of particles.

* MakeDiskGalaxy:

OutputDir OutputFile	./ Sb.d	at	% Output directory % Filename of generated initial conditions
CC V200 LAMBDA MD MB	9.0 160.0 0.05 0.03 0.02	% % %	halo concentration circular velocity v_200 (in km/sec) spin parameter disk mass fraction bulge mass fraction
MBH	0.00	001 % % %	black hole mass fraction. If zero, no black hole is generated, otherwise one at the centre is added.
JD	0.03	%	disk spin fraction, typically chosen equal to MD
GasFraction DiskHeight BulgeSize	0.15 0.2 0_3	% %	relative content of gas in the disk, the rest is stars thickness of stellar disk in units of radial scale length balge scale length in units of disk scale length
N_HALO N_DISK N_GAS N_BULGE	9750 1650 3000 1300	00 % 00 % 0 % 00 %	desired number of particles in dark halo desired number of collisionless particles in disk number of gas particles in disk number of bulge particles
HI_GasMassFr HI_GasDiskSc disk MaxGasDiskHe	action aleLeng ight	0.0 th 6 1.0	% mass of extended, flat HI disk in terms of the total gas mass % scale length of extended gas disk in terms of scale length of the % to prevent too big flaring of isothermal outer gas disk
RadialDisper	sionFac	tor 1.0	% applies to stellar disk: Gives the radial % dispersion in units of the z-dispersion
MaxSfrTimesco FactorSN FactorEVP TempSupernovo phase model) TempClouds	ale a	4.5 0.1 3000 3e+08 1000	<pre>% Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model) % A_0, evaporation parameter (multi-phase model) % T_SN, effective "supernova temperature",sets feedback energy (multi- % temperature of cold clouds (multi-phase model)</pre>
FactorForSof	terEQS	0.25	% Can be used to make the equation of state % softer. For 1.0, the multiphase model is % used, while for 0.0 isothermal at 10^4 K is % assumed. Intermediate values interpolate % linearly between the two pressures.
REDSHIFT Omega_m0 Omega_L0		0.0 0.3 0.7	% Brants additions % redshift to scale galaxy properties to % Omega_m % Omega_L

* MakeDiskGalaxy:

OutputFile	.∕ Sb.dat		% Output directory % Filename of generated initial conditions
CC V200	9.0	%	halo concentration $cincular value (in km/sec)$
	0.05	%	snin narameter
MD	0.03	%	disk mass fraction
MB	0.02	%	bulge mass fraction
МВН	0.00001	. % % %	black hole mass fraction. If zero, no black hole is generated, otherwise one at the centre is added.
JD	0.03	%	disk spin fraction, typically chosen equal to MD
GasFraction	0.15	%	relative content of gas in the disk, the rest is stars
DiskHeight	0.2	%	thickness of stellar disk in units of radial scale length
BulgeSize	0.3	%	bulge scale length in units of disk scale length
ΝΗΔΙΟ	975000	% d	lesired number of narticles in dark halo
N DISK	165000	% %	desired number of collisionless particles in disk
N GAS	30000	%	number of aas particles in disk
N_BULGE	130000	%	number of bulge particles
HI_GasMassFro HI_GasDiskSco	action aleLength	0.0 6	% mass of extended, flat HI disk in terms of the total gas mass % scale length of extended gas disk in terms of scale length of the
disk MaxGasDiskHei	ight	1.0	% to prevent too big flaring of isothermal outer gas disk
RadialDispers	sionFactor	1.0	% applies to stellar disk: Gives the radial
			0/ dispansion in units of the - dispansion
			% dispersion in units of the z-dispersion
MaxSfrTimesco	ile 4.	5	% Gas consumption timescale (multi-phase model)
MaxSfrTimesco FactorSN	ale 4. Ø.	5 1	<pre>% dispersion in units of the z-dispersion % Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model)</pre>
MaxSfrTimesco FactorSN FactorEVP	ale 4. 0. 30	5 1 00	<pre>% dispersion in units of the z-dispersion % Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model) % A_0, evaporation parameter (multi-phase model)</pre>
MaxSfrTimesco FactorSN FactorEVP TempSupernovc	ale 4. 0. 30 a 3e	5 1 00 +08	<pre>% dispersion in units of the z-dispersion % Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model) % A_0, evaporation parameter (multi-phase model) % T_SN, effective "supernova temperature",sets feedback energy (multi-</pre>
MaxSfrTimesco FactorSN FactorEVP TempSupernovo phase model) TempClouds	ale 4. 0. 30 a 3e 10	5 1 00 +08	<pre>% dispersion in units of the z-dispersion % Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model) % A_0, evaporation parameter (multi-phase model) % T_SN, effective "supernova temperature",sets feedback energy (multi- % temperature of cold clouds (multi-phase model)</pre>
MaxSfrTimesco FactorSN FactorEVP TempSupernovo phase model) TempClouds FactorForSoft	ale 4. 0. 30 a 3e 10 terEQS 0.	5 1 00 +08 00 25	<pre>% dispersion in units of the z-dispersion % Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model) % A_0, evaporation parameter (multi-phase model) % T_SN, effective "supernova temperature",sets feedback energy (multi- % temperature of cold clouds (multi-phase model) % Can be used to make the equation of state</pre>
MaxSfrTimesco FactorSN FactorEVP TempSupernovo phase model) TempClouds FactorForSoft	ale 4. 0. 30 a 3e 10 terEQS 0.	5 1 00 +08 00 25	<pre>% dispersion in units of the z-dispersion % Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model) % A_0, evaporation parameter (multi-phase model) % T_SN, effective "supernova temperature",sets feedback energy (multi- % temperature of cold clouds (multi-phase model) % Can be used to make the equation of state % softer. For 1.0, the multiphase model is % for the set of th</pre>
MaxSfrTimesco FactorSN FactorEVP TempSupernovo phase model) TempClouds FactorForSoft	ale 4. 0. 30 a 3e 10 terEQS 0.	5 1 00 +08 00 25	<pre>% dispersion in units of the z-dispersion % Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model) % A_0, evaporation parameter (multi-phase model) % T_SN, effective "supernova temperature",sets feedback energy (multi- % temperature of cold clouds (multi-phase model) % Can be used to make the equation of state % softer. For 1.0, the multiphase model is % used, while for 0.0 isothermal at 10^4 K is % converded Intermediate unloss intermediate</pre>
MaxSfrTimesco FactorSN FactorEVP TempSupernovo phase model) TempClouds FactorForSoft	ale 4. 0. 30 2 3e 10 terEQS 0.	5 1 00 +08 00 25	<pre>% dispersion in units of the z-dispersion % Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model) % A_0, evaporation parameter (multi-phase model) % T_SN, effective "supernova temperature",sets feedback energy (multi- % temperature of cold clouds (multi-phase model) % Can be used to make the equation of state % softer. For 1.0, the multiphase model is % used, while for 0.0 isothermal at 10^4 K is % assumed. Intermediate values interpolate % linearly between the two pressures.</pre>
MaxSfrTimesco FactorSN FactorEVP TempSupernovo phase model) TempClouds FactorForSoft	ale 4. 0. 30 2 3e 10 terEQS 0.	5 1 00 +08 00 25	<pre>% dispersion in units of the z-dispersion % Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model) % A_0, evaporation parameter (multi-phase model) % T_SN, effective "supernova temperature",sets feedback energy (multi- % temperature of cold clouds (multi-phase model) % Can be used to make the equation of state % softer. For 1.0, the multiphase model is % used, while for 0.0 isothermal at 10^4 K is % assumed. Intermediate values interpolate % linearly between the two pressures. % Brants additions</pre>
MaxSfrTimesco FactorSN FactorEVP TempSupernovo phase model) TempClouds FactorForSoft	ale 4. 0. 30 2 3e 10 terEQS 0.	5 1 00 +08 00 25 0	<pre>% dispersion in units of the z-dispersion % Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model) % A_0, evaporation parameter (multi-phase model) % T_SN, effective "supernova temperature",sets feedback energy (multi- % temperature of cold clouds (multi-phase model) % Can be used to make the equation of state % softer. For 1.0, the multiphase model is % used, while for 0.0 isothermal at 10^4 K is % assumed. Intermediate values interpolate % linearly between the two pressures. % Brants additions % redshift to scale galaxy properties to</pre>
MaxSfrTimesco FactorSN FactorEVP TempSupernovo phase model) TempClouds FactorForSoft REDSHIFT Omega_m0	ale 4. 0. 30 2 3e 10 terEQS 0. 0. 0.	5 1 00 +08 00 25 0 3	<pre>% dispersion in units of the z-dispersion % Gas consumption timescale (multi-phase model) % beta, mass fraction of massive stars (multi-phase model) % A_0, evaporation parameter (multi-phase model) % T_SN, effective "supernova temperature",sets feedback energy (multi- % temperature of cold clouds (multi-phase model) % Can be used to make the equation of state % softer. For 1.0, the multiphase model is % used, while for 0.0 isothermal at 10^4 K is % assumed. Intermediate values interpolate % linearly between the two pressures.</pre>

Temperature structure of the gas, assuming it follow the multiphase ISM structure outlined in Springel & Hernquist (2003).

* MakeDiskGalaxy:

OutputDir	./			% Output directory
OutputFile	Sb.d	lat		% Filename of generated initial conditions
CC	9.0		% hal	o concentration
V200	160.0		% cir	cular velocity v_200 (in km/sec)
LAMBDA	0.05		% spi	n parameter
MD	0.03	5	% dis	k mass fraction
MB	0.02		% bul	ge mass fraction
MBH	0.00	001	% bla	ck hole mass fraction. If zero, no black
			% hol	e is generated, otherwise one at the centre
			% is	added.
JD	0.03	5	% dis	k spin fraction, typically chosen equal to MD
C F	0.45		0/	
Gastraction	0.15)	% rel	ative content of gas in the disk, the rest is stars
DiskHeight	0.2		% thi	ckness of stellar aisk in units of radial scale length
BulgeSize	0.3		% bul	ge scale length in units of aisk scale length
N_HALO	9750	00 %	desi	red number of particles in dark halo
N_DISK	1650	00	% des	ired number of collisionless particles in disk
N_GAS	3000	0	% num	ber of gas particles in disk
N_BULGE	1300	00	% num	ber of bulge particles
HT GasMassEra	action	0.0)	% mass of extended, flat HI disk in terms of the total aas mass
HI GasDiskSca	leLena	ith 6		% scale length of extended gas disk in terms of scale length of the
disk	J			
MaxGasDiskHei	.ght	1.0)	% to prevent too big flaring of isothermal outer gas disk
RadialDispers	sionFac	tor 1.0)	% applies to stellar disk: Gives the radial
				% dispersion in units of the z-dispersion
MaxSfrTimesca	le	4.5		% Gas consumption timescale (multi-phase model)
FactorSN		0.1		% beta, mass fraction of massive stars (multi-phase model)
FactorEVP		3000		% A_0, evaporation parameter (multi-phase model)
TempSupernova	ı	3e+08		$\%$ T_SN, effective "supernova temperature", sets feedback energy (multi-
phase model)				
TempClouds		1000		% temperature of cold clouds (multi-phase model)
FactorForSoft	erEQS	0.25		% Can be used to make the equation of state
				% softer. For 1.0, the multiphase model is
				% used, while for 0.0 isothermal at 10^4 K is
				<u>% assumed. Intermediate</u> values interpolate
				% linearly between the two pressures.
				% Brants additions
REDSHIFT		0.0		% redshift to scale galaxy properties to
Omega_m0		0.3		% Omega_m
Umega_L0		0.7		% Umega_L

The halo structure can be scales to any redshift.

* MakeHubbleType:

OutputDir	./		<u>% Output directory</u>	
OutputFile	Sbc.dat		% Filename of generated initial conditions	
C	11 0	% F	palo concentration	It is unclea
Myin	150 0	/0 T % \	arial mass (in 10/10 Msolar)	it is unclea
LAMBDA	0.050	% s	spin parameter	introduced
M DTSK	3.92	% t	rotal disk mass in units of 10^10 Msolar	
M GAS	2.4	% t	total disk mass in units of 10/10 Msolar	can captur
M_BULGE	1.00	% t	cotal disk mass in units of 10^10 Msolar	observed i
DARKMASS_IN_ROF	PT 9.95	% c	dark mass inside optical radius (3.2 * H)	
		•		program al
Н	5.5	% r	adial disk scale length	l'
DiskHeight	0.125	% t	nickness of disk in units of radial scale length	explicitly.
N_HALO	200000	%	desired number of particles in dark halo	
N_DISK	60000	%	desired number of collisionless particles in disk	
N_GAS	60000	%	number of gas particles in disk	
N_BULGE	20000	%	number of bulge particles	
HUBBLE 0.70		% Hubbl	e parameter (1 means units of h-1)	
Z 0		% Redsh	nift of Galaxy	
GasDistributior	n 1		% 0 = exp. (normal, same Rd as disk) % 1 = exp. (with Rd -> Rd*Alpha)	
			% 2 = Power Law (with PowerLawGamma < 2) and cut	-off (PowerLawCutOff)
GasExpAlpha	3.0		% gas is exp. with Rd*Alpha scale length	
PowerLawGamma	1		% power-law index, sigma ~ r^-gamma (gamma=1 is)	mestel) - must be < 2
PowerLawCutOff	20		% in units of kpc, when gas disk is terminated	
BulgeSize		0.45	% bulge scale length in units of disk scale lengt	'n
BulgeDistributi	on	1	% 0 = Hernquist profile (BulgeSize sets a) % 1 = Spherical exp. (BulgeSize sets 3D Rd)	
HI_GasMassFract	ion	0.0	% in terms of the total gas mass	
HI_GasDiskScale	Length	8	% in terms of scale length of the disk	
Qstabilizefacto	or	1.0		

It is unclear if using the basic model introduced by Mo, Mao, & White (1998) can capture the true range of properties observed in local disk galaxies so this program allows you to enter the structure explicitly.

* MakeDiskGalaxy and MakeHubbleType usage:

```
[hipacc-5@login-4-0 ~]$ cd Make???
[hipacc-5@login-4-0 Make??]$ make clean
[hipacc-5@login-4-0 Make??]$ make
cc -03 ....
...
[hipacc-5@login-4-0 Make??]$ ./Make??? param.txt > param.output
[hipacc-5@login-4-0 Make??]$
```

-> This generates a xxx.dat file which is the initial conditions read-in by Gadget.

Step I: Combining two isolated galaxies

* CombineGalaxies usage:

```
[hipacc-5@login-4-0 ~]$ cd CombineGalaxies
[hipacc-5@login-4-0 CombineGalaxies]$ dir
[hipacc-5@login-4-0 CombineGalaxies]$ make
           -O3 -Wall -c -o main.o main.c
CC
CC .....
. . . .
[hipacc-5@login-4-0 CombineGalaxies]$ ./CombineGalaxies
wrong number of arguments
call with:
<fname gall> <thetal> <phil>
<fname gal2> <theta2> <phi2>
<rmin> <rstart>
<fname galout>
(angles in degrees.)
```

[hipacc-5@login-4-0 CombineGalaxies]\$

-> This generates a xxx.dat file which is the initial conditions read-in by Gadget.

NOTE:

In practice, Gadget doesn't care whether these initial conditions that it's reading in are equilibrium models of galaxies or not. ANY file with the appropriate format (head, xyz position, xyz velocity, if gas is present, a temperature - see the c-code *save.c* in any of the aforementioned programs) will suffice as an initial condition. This affords tremendous flexibility for you to study any process that you consider to be relevant or interesting.

APOLOGY:

Discussion of cosmological initial conditions, codes that generate these, and examples of these will be omitted from this discussion - but I'm certain there are numerous people sitting in this room that can aid in this regard.

Step 2: Getting to know your computational "environment"

A significant component of numerical work is being able to trouble-shoot the compilation of your code, the successful running of it within a multiuser environment, and handling the large quantity of complex data it generates.

- * compiling from source: what libraries does Gadget require?
- * communication protocols?
- * optimization?
- * space considerations, data analysis and visualization?

What's currently loaded (this is the triton default):

```
[hipacc-5@login-4-0 ~]$ module list
Currently Loaded Modulefiles:
 1) pgi/10.5 2) openmpi_mx/1.4.1 3) hdf5/1.8.3 4) idl/706
[hipacc-5@login-4-0 ~]$
```

Other commands to know about:

module avail
module list
module load xxxx
module unload xxxx

Compilers and communication protocols are loaded via modules (this is the triton default):

```
[hipacc-5@login-4-0 ~]$ module avail
-----/opt/modulefiles/applications/.pgi ------
fftw/3.2.1(default) hdf4/2r4(default) hdf5/1.8.3(default) netcdf/3.6.2 netcdf/4.0.1(default)
-----/opt/modulefiles/mpi/.pgi -----
mpich mx/1.2.7(default) openmpi mx/1.4.1(default)
-----/opt/modulefiles/compilers ------
qnu/4.1.2(default) intel/11.1(default) pgi/10.5(default)
----- /opt/modulefiles/applications ------
apbs/1.2.1(default) bioroll/5.3(default) fsa/1.15.2(default) idl/706(default)
                                                          namd/2.6
nwchem/5.1.1(default) bbftpc/320(default) ddt/2.4.1(default) gamess/1.2009(default) lammps/28Nov09(default)
namd/2.7b1(default)
----- /opt/modules/Modules/versions ------
3.2.5
-----/opt/modules/Modules/3.2.5/modulefiles ------
dot module-cvs module-info modules
                              null
                                      use.own
[hipacc-5@login-4-0 ~]$
[hipacc-5@login-4-0 ~]$
```

gnu/4.1.2(default) intel/11.1(default) pgi/10.5(default)

triton has 3 different c compilers

[hipacc-5@login-4-0 ~]\$ module unload pgi/10.5
Unloading compiler-dependent module openmpi_mx/1.4.1
Unloading compiler-dependent module hdf5/1.8.3
[hipacc-5@login-4-0 ~]\$ module load gnu/4.1.2

You can use specific compilers and communication protocols via the loading and unloading of the appropriate modules. This can make a significant difference in simulation run times.

PBS batchscript :

#!/bin/sh
#PBS -q batch
#PBS -N Sbc
#PBS -l nodes=2:ppn=2
#PBS -o Sbc.out
#PBS -e Sbc.err
#PBS -V
#PBS -V
#PBS -M tcox@obs.carnegiescience.edu
#PBS -m abe

cd /home/hipacc-5/Sbc/

mpirun -v -machinefile \$PBS_NODEFILE -np 4 ./Gadget2 Sbc.txt > output0.txt

PBS batchscript :

#!/bin/sh
#PBS -q batch
#PBS -N Sbc
#PBS -l nodes=2:ppn=2
#PBS e Sbc.out
#PBS -e Sbc.err
#PBS -V
#PBS -V
#PBS -M tcox@obs.carnegiescience.edu
#PBS -m abe

How many cores (nodes & processors per node) should we be using?

cd /home/hipacc-5/Sbc/

mpirun -v -machinefile \$PBS_NODEFILE -np 4 ./Gadget2 Sbc.txt > output0.txt

* Speed scales with the number of processors up to a point.

* The point of deviation depends upon the problem (higher N, N_gas, smoother particle distributions all improve the scaling)

* Until you determine the scaling relation for the problem you're interested in, using a smaller number of cores will result in more efficient calculations.

Project I: Build a disk, simulate its evolution, and assess its stability

*This is the starting point for ALL of the projects suggested here.

* In practice, the underlying motivation of this project is to gain experience, building and using Gadget within a computational environment such as triton.

* However, the science involved within this project is still interesting: constructing galaxies of all Hubble types, testing commonly employed stability criteria, and understanding f_bar. Plus, these would be very useful initial condiitions for merger simulations.

Project I: Build a disk, simulate its evolution, and assess its stability

* A cautionary note: instabilities can be generated by both physical (dark matter content, bulge mass, disk kinematics, etc.) and numerical effects (noisy potential).

Hernquist (1993)

Toomre & Toomre (1972)

- Confirmation (or revision to) our understanding of the merger hypothesis and the growth of galaxies.
- A great way to test the astrophysical models (both "resolved" and subgrid) and radiative transfer post-processing.
- It's useful to do this for isolated systems AND mergers so that we can probe a wide range of ISM conditions.
- Fun!

Using Sunrise we can now do modelobservation comparisons in the observational realm (i.e., compare apples to apples).

Jonsson, Groves, & Cox (2010)

Comparison is encouraging, but are the differences due to modeling uncertainties, initial conditions, or both?

And, these are integrated quantities!

A partial list (see Barnes & Hibbard 2009 for a more complete list)

- 1970's: Toomre's (M51, Antennae, Arp 295, NGC 4676)
- 1995: NGC 7252
- 1997: Mihos & Bothun, NGC 2442
- 1998/2001: Hearn & Lamb, Arp 118/119
- 2000: Salo & Laurikainen, M51
- 2003: McDowell, Arp220
- 2004: Barnes, The Mice
- 2005: Smith/Struck, NGC 7714/15, NGC 2207
- 2006: Block, M3 I
- 2008: Bekki, M31/M33
- 2009: Renaud, The Antennae
- 2009: Dobbs, M51
- 2010: Chein/Barnes,NGC 7252 + a few more
- 2010: Green/Mulchaey/Cox, binary QSO

- Since finding a matching model is quite difficult, I've compiled a handful of recent model-matching efforts that have been published.
- Read these papers, extract the disk galaxy models and interaction parameters and port these to the Makexxx and CombineGalaxies codes to generate Gadget initial conditions.
- Run with Gadget
- If we have time, we can run these outputs through Sunrise next week.

Numerical Simulation

Arp 256 (HST, Evans et al. 2009)

Project 3/4: Modifying Gadget and doing code comparisons

- If you've found enjoyment and success in doing some of the prior projects, then these additional projects are a great way to delve into the guts of Gadget.
- A code comparison (a la the Santa Barbara cluster comparison project, or some of the Enzo/Ramses/Gadget comparisons of O'Shea et al., or Agertz et al.) for an idealized simulation is long overdue and would be very useful for the community at large.