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Two Methods

• Dedner (Wang+2009)

• CT (Collins+2010)



MHD looks just like 
HD...
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...Almost...

• 7 waves

• Not Strictly Hyperbolic:

• Nonconvex (Eigenvalue curvature changes 
sign along its characteristic)(and stuff)

•
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– 1 –

∂"U
∂t + ∂ "F ("U)

∂x = 0

A(U) = ∂ "F
∂"U

∇ · B = 0



• CT:

• 8 wave/Dedner:

• Poisson Cleaning (Hodge Projection) 
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Ûn+1
i = Ûn
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Components of MHD

• Flux Computation

• Making it 3d

•                mechanism

• AMR

• Data Structures

• Altering B
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Finite Volume Basics
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∆x(F̂ (x + ∆x)− F̂ (x))
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Volume average.
What we’re looking for.

Time (and area) average.
Good for one PhD in 

Applied Math.
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274 BALSARA AND SPICER

FIG. 1. The collocation of the magnetic fields as the control volume’s faces and the collocation of the electric

fields at the control volume’s edges. The notation used in the paper is established.

construction of higher order Godunov schemes. In component form the full set of equations

is given by

∂

∂t
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Ûn+1
i = Ûn
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Nickel tour of Godunov

Exact Solution of
Approximate Problem



– 1 –

∂"U
∂t + ∂ "F ("U)

∂x = 0

A(U) = ∂ "F
∂"U

∇ · B = 0

∂t "B = ∇× "E

"Bnum = "B + "Bdiv = "B +∇U

∇ · "Bnum = ∇2U

"U = (ρ,"v, "B, E, φ)

Bx∫ x+∆x
x dx

∫ t+∆t
t dt

()

1
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∆x(F̂ (x + ∆x)− F̂ (x))
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i Ûn

i+1 F̂i+1
2

x U

– 1 –

∂"U
∂t + ∂ "F ("U)

∂x = 0

A(U) = ∂ "F
∂"U

∇ · B = 0

∂t "B = ∇× "E

"Bnum = "B + "Bdiv = "B +∇U

∇ · "Bnum = ∇2U

"U = (ρ,"v, "B, E, φ)

Bx∫ x+∆x
x dx

∫ t+∆t
t dt

()

1
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• Upwind (Reduces oscillation)

• Shock Capturing 

• First Order :(
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Ûn+1
i = Ûn
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Ûn
i Ûn
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Convergent Evolution

• Both MHD implementations use:

• PLM for reconstruction

• HLL family for Riemann Solution

• Good balance between

• Accuracy

• Stability
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Also Higher Order Time Integration!
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FIG. 1. The collocation of the magnetic fields as the control volume’s faces and the collocation of the electric

fields at the control volume’s edges. The notation used in the paper is established.

construction of higher order Godunov schemes. In component form the full set of equations

is given by
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Electric Field from Fluxes from Solver
B = ∇× E

(Balsara & Spicer 1999) (Gardiner & Stone 2005)
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approach with calculations obtained using the Powell source terms or without using any

divergence correction. We do not consider other techniques, such as the Hodge projection

or staggered grids, since we want to focus on methods which can be used as simple add-ons

to existing finite-volume codes on arbitrary grids and do not require nonlocal operations

or other fundamental changes in the implementation. For a comparison of the source term

approach, the projection scheme, and constrained transport/central difference type schemes

on structured grids we refer to [43]. Finally, our conclusions are given in Section 6. Ana-

lytical results concerning the behavior of divergence errors in the one-dimensional case are

discussed in the Appendix.

2. CONSTRAINED FORMULATIONS OF THE MHD EQUATIONS

In [34, 35] the divergence constraint for the electric field E in the Maxwell equations has

been coupled with the evolution equation for E by introducing a new unknown function ψ .

Different possibilities for this correction have been examined, which lead to an elliptic, a

parabolic, or a hyperbolic equation forψ . We suggest using the same approach to couple the

divergence constraint (2) for the magnetic field B with the hyperbolic evolution equations

(1a)–(1d). Equation (2) and the equations for themagnetic induction (1c) are thus replacedby

∂tB+ ∇ · (uBT − BuT ) + ∇ψ = 0, (4)

D(ψ) + ∇ · B = 0, (5)

where D is a linear differential operator. Hence a new unknown function ψ which couples

the divergence constraint to the hyperbolic system is introduced. We try to choose D and

the initial and boundary conditions for ψ in such a way that a numerical approximation

to (4), (5) is a good approximation to the original system (1c), (2). In the following we

describe different choices for the linear operatorD according to the suggestions in [34, 35].
Theoretical justification for some of these approaches is given in the Appendix.

For sufficiently smooth solutions we obtain

∂t (∇ · B) + #ψ = 0, (6)

∂tD(∇ · B) + #D(ψ) = 0, (7)

∂tD(ψ) + ∂t (∇ · B) = 0, (8)

#D(ψ) + #(∇ · B) = 0 (9)

from (4) and (5), respectively. Thus we have

∂tD(∇ · B) − #(∇ · B) = 0, (10)

∂tD(ψ) − #ψ = 0; (11)

i.e., ∇ · B and ψ satisfy the same equation for any choice of D.
If we choose

D(ψ) := 0, (12)

then ψ is just a Lagrange multiplier. Within the numerical framework we can apply the

following two-step method in the spirit of an operator-splitting approach: In the first step
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due to the stability conditions restricting the choice of cp. (Preliminary tests for the full

MHD system point in the same direction. In addition, the implementation of the parabolic

approach on unstructured grids is not straightforward.) This difficulty is overcome by using

a combination of the parabolic and the hyperbolic ansatz; the results obtained in [33] for this

choice are very encouraging. To adapt this mixed correction to our situation we have to use

D(ψ) := 1

c2h
∂tψ + 1

c2p
ψ. (17)

Now Eq. (11) is equal to the telegraph equation [23]

∂2t tψ + c2h

c2p
∂tψ − c2h#ψ = 0 (18)

and offers both dissipation and propagation of divergence errors. The “divergence con-

straint” (5) takes the form

∂tψ + c2h∇ · B = − c2h

c2p
ψ. (19)

Since the damping is now achieved by a source term instead of an explicit dissipation, there

is no longer a restriction on cp imposed by a stability condition. Note that the only source

term occurs in the equation for the unphysical variable ψ . The mixed correction can be

formally reduced to the hyperbolic correction if we set cp := ∞.

As proposed in [34, 35] for the Maxwell equations, the system (1a), (1b), (4), (1d), (5)

is called the generalized Lagrange multiplier (GLM) formulation of the MHD equations. It

is worth noting that for the hyperbolic and mixed corrections considered above, the GLM–

MHD system is hyperbolic and the variables ρ, ρu, B, and e are still conserved (see also

Section 3).

A slightly different constrained formulation is obtained if we derive the MHD equations

from the GLM–Maxwell equations instead of correcting the MHD equations directly. As-

suming that the time evolution of the electric field can be neglected, the GLM–Maxwell

equations from [34, 35] with corrections affecting ∇ · B read

∇ × B = j, (20a)

∂tB+ ∇ × E+ ∇ψ = 0, (20b)

D(ψ) + ∇ · B = 0. (20c)

HereE denotes the electric field and j the current density. As before, the coupling of the time

evolution equation (20b) and the divergence condition (20c) is achieved by the function ψ

and the linear differential operator D.
Instead of combining the usual Maxwell equations with the fluid equations, we take the

modified equations (20a)–(20c). In the fluid equations the influence of the magnetic field

appears as an external force: The Lorentz force

FL := j× B (21)
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D(ψ) := 1

c2h
∂tψ + 1

c2p
ψ. (17)

Now Eq. (11) is equal to the telegraph equation [23]

∂2t tψ + c2h

c2p
∂tψ − c2h#ψ = 0 (18)

and offers both dissipation and propagation of divergence errors. The “divergence con-

straint” (5) takes the form

∂tψ + c2h∇ · B = − c2h

c2p
ψ. (19)

Since the damping is now achieved by a source term instead of an explicit dissipation, there

is no longer a restriction on cp imposed by a stability condition. Note that the only source

term occurs in the equation for the unphysical variable ψ . The mixed correction can be

formally reduced to the hyperbolic correction if we set cp := ∞.

As proposed in [34, 35] for the Maxwell equations, the system (1a), (1b), (4), (1d), (5)

is called the generalized Lagrange multiplier (GLM) formulation of the MHD equations. It

is worth noting that for the hyperbolic and mixed corrections considered above, the GLM–

MHD system is hyperbolic and the variables ρ, ρu, B, and e are still conserved (see also

Section 3).

A slightly different constrained formulation is obtained if we derive the MHD equations

from the GLM–Maxwell equations instead of correcting the MHD equations directly. As-

suming that the time evolution of the electric field can be neglected, the GLM–Maxwell

equations from [34, 35] with corrections affecting ∇ · B read

∇ × B = j, (20a)

∂tB+ ∇ × E+ ∇ψ = 0, (20b)

D(ψ) + ∇ · B = 0. (20c)

HereE denotes the electric field and j the current density. As before, the coupling of the time

evolution equation (20b) and the divergence condition (20c) is achieved by the function ψ

and the linear differential operator D.
Instead of combining the usual Maxwell equations with the fluid equations, we take the

modified equations (20a)–(20c). In the fluid equations the influence of the magnetic field

appears as an external force: The Lorentz force

FL := j× B (21)

Then
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completes the momentum equations, while FL · u supplements the energy equation. Equa-
tion (20a) and some simple calculations yield the identities

FL = (∇ × B) × B = ∇ ·
(
BBT − 1

2
B2I

)
− (∇ · B)B. (22)

In the momentum equation the part in divergence form is added to the flux, while the second

term is considered to be a “source term.” Usually this second term is dropped, assuming

that the magnetic field is divergence-free. The total energy e consists of the hydrodynamic

energy and the magnetic energy |B|2/2. By means of considerations similar to those in
(22) we obtain the source term −B · (∇ψ) for the energy equation. Furthermore, in the

magnetohydrodynamic case Ohm’s law reads

E = −u× B. (23)

Using (23) we derive the magnetic field equations from (20b). The resulting system reads

∂tρ + ∇ · (ρu) = 0, (24a)

∂t (ρu) + ∇ ·
[
ρuuT +

(
p + 1

2
B2

)
I − BBT

]
= −(∇ · B)B, (24b)

∂tB+ ∇ · (uBT − BuT + ψI) = 0, (24c)

∂t e + ∇ ·
[(

e + p + 1

2
B2

)
u− B(u · B)

]
= −B · (∇ψ), (24d)

∂tψ + c2h∇ · B = − c2h

c2p
ψ. (24e)

Since it equals the GLM–MHD system (1a), (1b), (4), (1d), (5) extended by additional terms

on the right-hand side, we call this approach the extended GLM (EGLM) formulation of

the MHD equations.

3. EIGENSYSTEM OF THE CONSTRAINED MHD EQUATIONS

In this section we study the eigensystem of the GLM– and EGLM–MHD systems. We

compare its structure with that obtained for the original MHD equations and for the system

with divergence source terms [25, 36]. Furthermore, we show how the GLM– and EGLM–

MHD system can be modified to achieve Galilean invariance.

First we consider the GLM–MHD equations (1a), (1b), (4), (1d), (5) with the mixed

correction (17) in one space dimension:

∂tρ + ∂x (ρux ) = 0,

∂t (ρux ) + ∂x

(
ρu2x + p + 1

2

(
B2y + B2z − B2x

))
= 0,

∂t (ρuy) + ∂x (ρuxuy − Bx By) = 0,

∂t (ρuz) + ∂x (ρuxuz − Bx Bz) = 0,

∂t Bx + ∂xψ = 0, (25)

New Terms



Dedner

HYPERBOLIC DIVERGENCE CLEANING 651

completes the momentum equations, while FL · u supplements the energy equation. Equa-
tion (20a) and some simple calculations yield the identities

FL = (∇ × B) × B = ∇ ·
(
BBT − 1

2
B2I

)
− (∇ · B)B. (22)

In the momentum equation the part in divergence form is added to the flux, while the second

term is considered to be a “source term.” Usually this second term is dropped, assuming

that the magnetic field is divergence-free. The total energy e consists of the hydrodynamic

energy and the magnetic energy |B|2/2. By means of considerations similar to those in
(22) we obtain the source term −B · (∇ψ) for the energy equation. Furthermore, in the

magnetohydrodynamic case Ohm’s law reads

E = −u× B. (23)

Using (23) we derive the magnetic field equations from (20b). The resulting system reads

∂tρ + ∇ · (ρu) = 0, (24a)

∂t (ρu) + ∇ ·
[
ρuuT +

(
p + 1

2
B2

)
I − BBT

]
= −(∇ · B)B, (24b)

∂tB+ ∇ · (uBT − BuT + ψI) = 0, (24c)

∂t e + ∇ ·
[(

e + p + 1

2
B2

)
u− B(u · B)

]
= −B · (∇ψ), (24d)

∂tψ + c2h∇ · B = − c2h

c2p
ψ. (24e)

Since it equals the GLM–MHD system (1a), (1b), (4), (1d), (5) extended by additional terms

on the right-hand side, we call this approach the extended GLM (EGLM) formulation of

the MHD equations.

3. EIGENSYSTEM OF THE CONSTRAINED MHD EQUATIONS

In this section we study the eigensystem of the GLM– and EGLM–MHD systems. We

compare its structure with that obtained for the original MHD equations and for the system

with divergence source terms [25, 36]. Furthermore, we show how the GLM– and EGLM–

MHD system can be modified to achieve Galilean invariance.

First we consider the GLM–MHD equations (1a), (1b), (4), (1d), (5) with the mixed

correction (17) in one space dimension:

∂tρ + ∂x (ρux ) = 0,

∂t (ρux ) + ∂x

(
ρu2x + p + 1

2

(
B2y + B2z − B2x

))
= 0,

∂t (ρuy) + ∂x (ρuxuy − Bx By) = 0,

∂t (ρuz) + ∂x (ρuxuz − Bx Bz) = 0,

∂t Bx + ∂xψ = 0, (25)

Hyperbolic!  Use Godunov
Source Terms.

P Decays.

– 3 –

Dφ +∇ ·B = 0

Dφ := 1
c2
h

∂φ
∂t + 1

c2
p
φ

FLorentz = (∇×B)×B =

∇ · (BBT − 1
2B

2I)−B(∇ · B)

ψ
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AMR: Dedner

• Use native Enzo interpolation, flux correction



AMR: CT

• Divergence free reconstruction
(Balsara 2001)



AMR: CT
• Flux Correction is gross and horrible, not 

naturally set up for all necessary cases.

• Instead, I project E, then re-curl.  

• It’s the identical in outcome, but easier, less 
error prone.

Flux Correction: 

grid::CorrectForRefinedFluxes!

!! Mismatch of fluxes occurs around boundary of fine grids 

!! Coarse cell just outside boundary used coarse fluxes but 
coarse cell inside used fine fluxes 

!! Both fine and coarse fluxes saved 

   from hydro solver 

Uncorrected 
coarse value 

Coarse flux 
across boundary 

Sum of fine fluxes 
Over 4 (in 3D) 

abutting fine cells  
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Data Structures:
Dedner

•BaryonField

•GradPhi

•EvolveLevel_RK2



Data Structures: CT

• MagneticField

• ElectricField
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Ûn+1
i = Ûn

i −
∆t
∆x(F̂i+1

2
− F̂i−1

2
)

Ûn
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Alterations

• Dedner: Update magnetic field directly

• CT: Update electric field directly.
(or some other divergence free addition)



Conclusions

• Talked about CT and Dedner in Enzo.

• Dedner is out now!

• Look for CT in stores soon!
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In simulations of magnetohydrodynamic (MHD) processes the violation of the

divergence constraint causes severe stability problems. In this paper we develop and

test a new approach to the stabilization of numerical schemes. Our technique can be

easily implemented in any existing code since there is no need to modify the solver

for theMHD equations. It is based on amodified system inwhich the divergence con-

straint is coupled with the conservation laws by introducing a generalized Lagrange

multiplier. We suggest a formulation in which the divergence errors are transported

to the domain boundaries with the maximal admissible speed and are damped at the

same time. This corrected system is hyperbolic and the density, momentum, mag-

netic induction, and total energy density are still conserved. In comparison to results

obtained without correction or with the standard “divergence source terms,” our ap-

proach seems to yield more robust schemes with significantly smaller divergence

errors. c© 2002 Elsevier Science (USA)

Key Words:MHD equations; finite-volume schemes; divergence cleaning.

1. INTRODUCTION

Electrically conducting fluid flow in which the electromagnetic forces can be of the same

order or even greater than the hydrodynamic ones is often modeled by the equations of

magnetohydrodynamics (MHD). The ideal MHD equations consist of a set of nonlinear

hyperbolic equations,

∂tρ + ∇ · (ρu) = 0, (1a)

∂t (ρu) + ∇ ·
[
ρuuT +

(
p + 1

2
|B|2

)
I − BBT

]
= 0, (1b)
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∂tB+ ∇ · (uBT − BuT ) = 0, (1c)

∂t e + ∇ ·
[(

e + p + 1

2
|B|2

)
u− B(u · B)

]
= 0, (1d)

together with the additional divergence constraint

∇ · B = 0. (2)

Here B = (Bx , By, Bz)
T denotes the magnetic induction, u = (ux , uy, uz)

T the fluid veloc-

ity, ρ the density, and e the energy density. The hydrodynamic pressure p is given by the

equation of state for a perfect gas,

p = (γ − 1)

(
e − 1

2
ρ|u|2 − 1

2
|B|2

)
, (3)

with adiabatic exponent γ > 1. This system combines the equations of gas dynamics with

the Maxwell equations for problems in which relativistic, viscous, and resistive effects can

be neglected; the permeability is set to unity. If the initial data for the magnetic field satisfy

(2), then an exact solutionwill satisfy this constraint for all times. For smooth solutions this is

directly obtained from the evolution equations for the magnetic field (1c), because they can

be written in the equivalent form ∂tB+ ∇ × (B× u) = 0 and we have ∇ · (∇ × ·) ≡ 0.

Hence numerical methods are usually based only on the hyperbolic evolution equations

(1a)–(1d).

Because usually the discrete divergence of the discrete curl is not exactly zero,∇ · B errors
arise in numerical simulations and may increase with time. If this happens, the behavior

of the system can become unphysical: Magnetic field lines may have wrong topologies,

leading to plasma transport orthogonal to the magnetic field. This effect is discussed by

Brackbill and Barnes [12], Brackbill [11], and Balsara and Spicer [6].

Schemes have been developed which imitate the analytical fact that the divergence of a

curl equals zero. These schemes are often referred to as “constrained transport methods.”

The first scheme of this type was proposed by Yee [46] for the Maxwell equations. Gen-

eralizations were introduced by Holland [26] and by Madsen and Ziolkowski [30]. This

approach has been adapted to the MHD equations by Brecht et al. [13], Evans and Hawley

[22], Stone andNorman [41], andDeVore [21]. Recent enhancements can be found in [6, 18,

29, 39, 43]. Themain idea of the constrained transport approach is to use a special discretiza-

tion of the magnetic field equations. This means that the underlying base scheme is only

partially used and thus some of its desired properties may be lost. Moreover, these schemes

are restricted to structured grids and require large stencils for the spatial discretization

(cf. [43, p. 646]).

In recent years upwind finite-volume schemes, such as Godunov-type schemes or flux-

vector-splitting schemes, have become very popular in numerical gas dynamics. This is

due to the fact that by using this approach one can obtain discrete shock profiles without

generating spurious oscillations as well as second- or higher-order accuracy in smooth parts

of the flow. Among the first to apply Godunov-type schemes to the MHD equations were

Brio and Wu [14]. Recent examples include those in [7, 9, 15, 16, 19, 20, 37, 38, 45, 48].

In the finite-volume approach each component of the curl of a vector field is interpreted

as the divergence of a flux and integrated using Gauss’ theorem. In many implementations

Probably don’t need this slide.


