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I. Hydrodynamics

Show PPM movies



Fluid Equations - grid::SolveHydroEquations

Mass conservation

Momentum

conservation

Energy conservation

Ideal Gas EOS

Self-gravity

Field names: Density, Pressure, TotalEnergy, InternalEnergy, 

Velocity1, Velocity2, Velocity3



grid class: accessing the fields – grid.h

 In grid class:

 BaryonFields[] – array of pointers to each field

 Fortran (row-major) ordering within each field

 GridRank – dimensionality of problem

 GridDimensions[] – dimensions of this grid

 GridStartIndex[] – Index of first “active” cell (usually 3)

 First (and last) three cells are ghost or boundary zones

int DensNum = FindField(Density, FieldType, NumberOfBaryonFields);

int Vel1Num = FindField(Velocity1, FieldType, NumberOfBaryonFields);

for (k = GridStartIndex[2]; k <= GridEndIndex[2]; k++) {

for (j = GridStartIndex[1]; j <= GridEndIndex[1]; j++) {

for (i = GridStartIndex[0]; i <= GridEndIndex[0]; i++) {

BaryonField[Vel1Num][GINDEX(i,j,k)] *= BaryonField[DensNum][GINDEX(I,j,k)];

}

}

} 



Enzo file name convention

 General C++ routines:

 Routine name: EvolveLevel(…)

 In file: EvolveLevel.C

 One routine per file!

 grid methods:

 Routine name: grid::MyName(…)

 In file: Grid_MyName.C

 Fortran routines:

 Routine name: intvar(…)

 In file: intvar.src

 .src is used because routine is fed first through C preprocessor 



PPM Solver: grid::SolvePPM_DE

 HydroMethod = 0

 PPM: e.g. mass conservation equation

 Flux conservative form:

 In discrete form:

 How to compute mass flux?

 Note: multi-dimensions handled by operating splitting
 grid::xEulerSweep.C, grid::yEulerSweep.C, grid::zEulerSweep.C

Mass flux across j+1/2 boundary



Grid::SolvePPM_DE
// Update in x-direction

for (k = 0; k < GridDimension[2]; k++) {

if (this->xEulerSweep(k, NumberOfSubgrids, SubgridFluxes,

GridGlobalStart, CellWidthTemp, GravityOn,

NumberOfColours, colnum) == FAIL) {

fprintf(stderr, "Error in xEulerSweep.  k = %d\n", k);

ENZO_FAIL("");

}

} // ENDFOR k

// Update in y-direction

for (i = 0; i < GridDimension[0]; i++) {

if (this->yEulerSweep(i, NumberOfSubgrids, SubgridFluxes,

GridGlobalStart, CellWidthTemp, GravityOn,

NumberOfColours, colnum) == FAIL) {

fprintf(stderr, "Error in yEulerSweep.  i = %d\n", i);

ENZO_FAIL("");

}

} // ENDFOR i



PPM: 1D hydro update: grid::xEulerSweep

 Copy 2D slice out of cube

 Compute pressure on slice (pgas2d)

 Calculate diffusion/steepening coefficients (calcdiss)

 Compute Left and Right states on each cell edge (inteuler)

 Solve Reimann problem at each cell edge (twoshock)

 Compute fluxes of conserved quantities at each cell edge 

(euler)

 Save fluxes for future use

 Return slice to cube



PPM: reconstruction: inteuler

 Piecewise parabolic representation:

 Coefficients ( q and q6) computed with mean q and qL, qR.

 For smooth flow (like shown above), this is fine, but can cause a 
problem for discontinuities (e.g. shocks)

 qL, qR are modified to ensure monotonicity (no new extrema)

qR

qL

q



PPM: Godunov method: twoshock

 To compute flux at cell boundary, take two initial constant 

states and then solve Riemann problem at interface

 Given solution, can compute flux across boundary

 Advantage: correctly satisfies jump conditions for shock

rarefaction wave

contact discontinuity

shock

left state right state



PPM: Godunov method: inteuler, twoshock

 For PPM, compute left and right states by averaging over 

characteristic region (causal region for time step t)

 Average left and right regions become constant regions 

to be feed into Riemann solver (twoshock).



PPM: Eulerian corrections: euler

 Eulerian case more complicated because cell edge is fixed.  

 Characteristic region for fixed cell more complicated:

 Note that solution is not known ahead of time so two-step 

procedure is used (see Collela & Woodward 1984 for details) 

SUBSONIC CASE SUPERSONIC CASE



Difficulty with very high Mach flows

 PPM is flux conservative so natural variables are mass, 

momentum, total energy

 Internal energy (e) computed from total energy (E):

 Problem can arise in very high Mach flows when E >> e

 e is difference between two large numbers

 Not important for flow dynamics since p is negligible

 But can cause problems if we want accurate temperatures 

since T e



Dual Energy Formalism: 
grid::ComputePresureDualEnergyFormalism

 Solution:  Also evolve equation for internal energy:

 Select energy to use depending on ratio e/E:

 Select with DualEnergyFormalism = 1

 Use when v/cs > ~20

 Q: Why not just use e?

 A: Equation for e is not in conservative form (source term).

 Source term in internal energy equation causes diffusion



Zeus Solver: grid::ZeusSolver

 Traditional finite difference method 

 Artificial viscosity (see Stone & Norman 1992)

 HydroMethod = 2

 Source step: ZeusSource

 Pressure (and gravity) update:

 Artificial viscosity:

 Compression heating:



Zeus Solver: grid::ZeusSolver

 Transport step: Zeus_xTransport

 Note conservative form (transport part preserves mass)

 Note vj+1 is face-centered so is really at cell-edge, but density 

needs to be interpolated.  Zeus uses an upwinded van Leer 

(linear) interpolation:  

 Similarly for momentum and energy (and y and z)

 Zeus_yTransport, Zeus_zTransport

e.g.



Zeus Solver: grid::ZeusSolver

 PPM is more accurate, slower but Zeus is faster and more 

robust.

 PPM often fails (“dnu < 0” error) when fast cooling generates 

large density gradients.

 Try out new hydro solvers in Enzo 2.0!

 Implementation differences with PPM:

 Internal energy equation only

 In code, TotalEnergy field is really internal energy (ugh!)

 Velocities are face-centered

 BaryonField[Vel1Num][GINDEX(i,j,k)] really “lives” at i-1/2



II. Block Structured AMR



Level 0

x x

x

Level 1

Level 2

Grid Hierarchy Data Structure

(0,0)

(1,0)

(2,0) (2,1)



AMR: EvolveHierarchy

 Root grid NxNxN, so x = DomainWidth/N

 Level L defined so x = DomainWidth/(N2L)

 Starting with level 0, grid advanced by t

 Main loop of EvolveHierarchy looks (roughly) like this:

 EvolveLevel does the heavy lifting



Time Step: grid::ComputeTimeStep

 Timestep on level L is minimum of constraints over all 

level L grids:

 + others (e.g. MHD, FLD, etc.)

CourantSafetyFactor

ParticleCourantSafetyFactor

MaximumExpansionFactor



AMR: EvolveLevel

 Levels advanced as follows:

 Timesteps may not be integer ratios

 (Diagram assumes Courant condition dominates and sound speed  is 

constant so: dt x)

 This algorithm is defined in EvolveLevel



Advance grids on level: EvolveLevel

 The logic of EvolveLevel is given (roughly) as:

Already talked about this.

Next, we’ll talk about these

recursive



BC’s: SetBoundaryConditions

 Setting “ghost” zones around outside of domain
 grid::SetExternalBoundaryValues

 Choices: reflecting, outflow, inflow, periodic

 Only applied to level 0 grids (except periodic)

 Otherwise, two step procedure:

 Interpolate ghost (boundary) zones from level L-1 grid

 grid::InterpolateBoundaryFromParent

 Linear interpolation in time (OldBaryonFields)

 Spatial interpolation controlled by InterpolationMethod

 SecondOrderA recommended, default (3D, linear in space, monotonic)

 Copy ghost zones from sibling grids

 grid::CheckForOverlap and grid::CopyZonesFromGrid



Projection: grid::ProjectSolutionToParentGrid

 Structured AMR produces redundancy: 

 coarse and fine grids cover same region

 Need to restore consistency

 Correct coarse cells once grids have all reach the same 

time:



Flux Correction: grid::CorrectForRefinedFluxes

 Mismatch of fluxes occurs around boundary of fine grids

 Coarse cell just outside boundary used coarse fluxes but 

coarse cell inside used fine fluxes

 Both fine and coarse fluxes saved

from hydro solver

Uncorrected

coarse value
Coarse flux

across boundary

Sum of fine fluxes

Over 4 (in 3D)

abutting fine cells 



Rebuilding the Hierarchy: RebuildHierarchy

 Need to check for cells needing more refinement

Check for new grids on

level 1 (and below)

Check for new grids on

Level 2 (and below)

Check for new grids on

Level 3 (and below)



Refinement Criteria – grid::SetFlaggingField

 Many ways to flag cells for refinement

 CellFlaggingMethod =

 Then rectangular grids must be chosen to cover all 

flagged cells with minimum “waste”

 Done with machine vision technique

 Looks for edges (inflection points in number of flagged cells)

 ProtoSubgrid class



III. Gravity



Self-Gravity (SelfGravity = 1)

 Solve Poisson equation

 PrepareDensityField

 BaryonField[Density] copied to GravitatingMassField

 Particle mass is deposited in 8 nearest cells (CIC)

 Particle position advanced by ½ step

 DepositParticleMassField

 Root grid (level 0):

 Potential solved with FFT

 ComputePotentialFieldLevelZero

 Potential differenced to get acceleration
 grid::ComputeAccelerationField



Self-Gravity

 Subgrids:

 Potential interpolated to boundary from parent
 Grid::PreparePotentialField

 Each subgrid then solves Poisson equation using multigrid
 Grid::SolveForPotential

 Note: this has two issues:

 Interpolation errors on boundary can propagate to fine levels

 Generally only an issue for steep potentials (point mass)

 Ameliorated by having 6 ghost zones for gravity grid

 Subgrids can have inconsistent potential gradients across boundary

 Improved by copying new boundary conditions from sibilings and resolving 

the Poisson equation (PotentialIterations = 4 by default)

 More accurate methods in development



Other Gravitational sources –

grid::ComputeAccelerationFieldExternal

 Can also add fixed potential:

 UniformGravity – constant field

 PointSourceGravity – single point source

 ExternalGravity – NFW profile



IV. Particles



N-body dynamics

 Particles contribute mass to GravitatingMassField

 Particles accelerated by AccelerationField

 Interpolated from grid (from 8 nearest cells)

 Particles advanced using leapfrog

 grid::ComputeAccelerations

 Particles stored in the locally most-refined grid
 ParticlePosition, ParticleVelocity, ParticleMass

 Tracer particles (massless) also available



IV. Chemistry and Cooling



Chemistry

 Follows multiple species and solve rate equations

 MultiSpecies = 1: H, H+, He, He+, He++, e-

 MultiSpecies = 2: adds H2, H2+, H-

 MultiSpecies = 3: adds D, D+ and HD

 grid:SolveRateEquations

 (or grid::SolveRateAndCoolEquations if RadiativeCooling > 0)

 Rate equations solved using backwards differencing 

formula (BDF) with sub-cycles to prevent > 10% changes

 Works well as long as chemical timescale not really short



Radiative Cooling – grid::SolveRadiativeCooling

 RadiativeCooling = 1

 Two modes:
 MultiSpecies = 0

 Equilibrium cooling table (reads file cool_rates.in)

 Sub-cycles so that De < 10% in one cooling step

 MultiSpecies > 1

 Computes cooling rate self-consistently from tracked-species

 MetalCooling = 1: adds metal cooling from Glover & Jappsen (2007)

 MetalCooling = 2: adds metal cooling from Raymond-Smith code

 MetalCooling = 3: Cloudy Cooling table (Smith, Sigurdsson & Abel 2008)

 RadiationFieldType > 0

 Add predefined radiative heating and ionization



Star Formation

 Work in progress – many modes

 StarParticleCreation > 0

 turns on and selects method (1-9)

 For more details, see web page

 StarParticleFeedback > 0

 Only valid for methods 1, 2, 7 and 8



More Physics in 2.0

 See talks tomorrow!



Ji-hoon Kim (KIPAC/Stanford)

Collaborators:  John Wise(Princeton),  Marcelo Alvarez(CITA), 
                 Matthew Turk(UCSD),  Tom Abel(Stanford)

Galaxy Formation on ENZO
with Properly Modeled Stars and MBHs

HIPACC-UCSC 07/28/10 www.jihoonkim.org
Wednesday, July 28, 2010



Outline

●  Key Components to Understand and Simulate Galaxies

●  Modeling the Physics of Galaxy Formation with Stars
   and MBHs As Best As You Can in ENZO

●  Simulation Set-ups and Early Results

www.jihoonkim.org

Star Formation

MBHStars

Gas MBH Accretion

Feedback

Gas

(DM, etc.)

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



[Star Formation and Feedback]

www.jihoonkim.org

PART I

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010
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M51/ HST ACS

Star Formation = Gas→Star

Wednesday, July 28, 2010
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M51/ HST ACS

Star Formation = Gas→Star
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M51/ HST ACS

Star Formation = Gas→Star

Wednesday, July 28, 2010



M51/ HST ACS
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M51/ HST ACS
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M51/ HST ACS

Wednesday, July 28, 2010



Previous SF Recipes
(so far in particle-based simulations)

www.jihoonkim.org

● Dominated mostly by 
the SF recipe using the 
Schmidt relation (1959) 

Robertson & Kravtsov (2008),
Kennicutt-Schmidt relation

ρ̇∗ = (1− β)fH2

ρg

t∗

� nH

10h2 cm−3

�0.5

● Apply thermal 
feedback or effective 
EOS to describe SNe 
feedback 

ΣSFR ∼ Σ1.4
H2

H2 surface density →  

SF
R

 s
ur

fa
ce

 d
en

si
ty

 →
  

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



Slow SF in Molecular Clouds

www.jihoonkim.org

● Very slow due to 
turbulence, B-field, 
protostellar wind, etc.; 
should be reflected in 
galaxy-scale studies

Krumholz & Tan (2007)

● MCs (104-105 Msun)
could be the basic units 
that can be represented 
in galaxy formation sims

H number density →  

SF
R

 p
er

 d
yn

am
ic

al
 t

im
e 
→

  

0.02

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



Star Particle - Formation

www.jihoonkim.org

MC

● Self-consistently deposit 
a particle when a cell of a 
typical MC size actually 
becomes Jeans unstable 

 → each particle describes    
   a MC of 8000 Msun

● Max resolution of 15.2 pc
  = LJeans of a MC of 
  125 particles/cm3 at 960 K

When all are met :

enzo AMR

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



Star Particle - Feedback

www.jihoonkim.org

MC 

● Both mass and energy are added back to gas
   - 80% of the MC mass slowly comes back to gas for 12 tdyn 
   - carries the thermal energy of 1051 ergs per Mstar=750 Msun

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



[Star Formation and Feedback]

PART I

MC

Wednesday, July 28, 2010



[MBH Accretion and Feedback]

www.jihoonkim.org

PART II

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



www.jihoonkim.org

Magorrian et al. (1998)

bulge mass →  

Coevolution of Galaxies and MBHs 

● Have galaxies and MBHs grown at the same time under each 
other’s influence?   

m
as

si
ve

 d
ar

k 
ob

je
ct

 (M
D

O
) m

as
s 
→

  

MBH −Mbulge

MBH − σbulge

MBH − nSersic redshift →  

SF
R

/B
H

A
R
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en

si
ty

 →
  

Zheng et al. (2009)

* Unified model:  Silk & Rees (1998),   
   Kauffmann & Haehnelt (2000), etc. 

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010
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Second Component!

● GOAL:  Study the coevolution of galaxies and MBHs 
               in one comprehensive self-consistent framework!

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



Previous Sink Particle Recipe
(so far in particle-based galaxy formation)

www.jihoonkim.org

● Growing MBH based on 
the spherical Bondi-Hoyle 
accretion argument

● Kernel-weighted thermal 
feedback (5% most cases) 
based on accretion rate

Hoyle & Lyttleton 
(1939)

Springel et al. (2005) 
& many others

feedback 
sphere

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



www.jihoonkim.org

● Eddington-limited Bondi 
estimate with no tweaks; 
subtraction from a sphere 
of radius RBondi

● Getting close to resolving 
RBondi of MBHs in galaxy-
scale simulations

MBH Particle - Accretion

enzo AMR

accretion sphere

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



MBH Particle - Feedback

● Designed three different feedback channels; two currently in use

www.jihoonkim.org

- Kim, Wise, Alvarez, & Abel (2010) in prep.

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



(1) MBH Radiative Feedback

www.jihoonkim.org

● Full 3D radiative transfer:  
   monochromatic 2 keV
   X-ray photon packages do

  - photoionization (H,He,He+)
  - photoheating 
  - Compton heating (e-)
  - radiation pressure

NASA

Ciotti et al. (2010):  1D-model
HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



(2) MBH Mechanical Feedback

www.jihoonkim.org

● Mechanical Energy
   = Potential Energy 
      (jets introduced at Rjet)    
   + Kinetic    Energy 
      (jets launched with vjet)

● Directed along Lgas-accreted;  
   injected at every 300 Msun

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



Multi-scale Physics

● Resolving things from RBondi to Rgalaxy, from 102 K to 107 K
    →  AMR enzo-2.0 poised to do a better job than ever

www.jihoonkim.org

vis by Ralf Kaehler

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



[Setting Up An Experiment
& Early Results]

www.jihoonkim.org

PART III

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



Simulation Suite

www.jihoonkim.org

● Ensembles of simulations with different modes of feedback to 
study the galaxy evolution regulated by stellar and MBH feedback

Sliced z-velocity, 40 kpcSliced photoheating rate, 40 kpcSliced temperature, 4 kpc

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



Galaxy Mergers: Great Laboratory

www.jihoonkim.org

NGC4038/9/ STScI, “Antennae”

- Kim, Wise, & Abel (2009) ApJL 694 L123

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



Galaxy Mergers
● Two 2x1011 Msun galaxies with embedded 105 Msun MBHs set 
on a collisional orbit (30° tilted, initially separated by 80 kpc)

www.jihoonkim.org

4 kpc centered on a MBH

Density-weighted density proj., 40 kpc, 250 Myrs

- Kim, Wise, & Abel (2009) ApJL 694 L123

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



Density-Temperature PDF

www.jihoonkim.org

● X-ray radiation significantly changes the ISM, and thus SF

● Hot temperature near a MBH prohibits nuclear star formation 

PDF in a 10 kpc sphere centered on one of MBHs

S-Fbck only S-Fbck + R/M-Fbck

SF
cutoff

SF
cutoff

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



SF and BH Accretion History

www.jihoonkim.org

● Star formation rate suppressed by soft X-ray radiation from 
MBH; more to see as two galaxies start to merge
 

● Jets do not impact much in regulating accretion as they are 
mostly perpendicular to gas disks

SFH (total stellar mass increase) BHAH

S-Fbck only

S-Fbck + R/M-Fbck
S-Fbck + R/M-Fbck

S-Fbck only

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



Cosmological Galaxy Formation at z=3

www.jihoonkim.org

● A ~1012 Msun galaxy selected at z=3 in a low-resolution run
   → insert a 105 Msun MBH and restart with 15.2 pc resolution

z=3, Density projection,16 comoving Mpc

200 kpc centered on a MBH

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010
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● X-ray radiation heats up gas clumps and suppresses SF (probably 
more efficiently because there is no well-defined disk)

Slice perpendicular to L, 100 Myrs, 20 kpc

Density Slice

S-Fbck only S-Fbck + R/M-Fbck

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010
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Temperature Slice

Slice perpendicular to L, 100 Myrs, 20 kpc

S-Fbck only S-Fbck + R/M-Fbck

● X-ray radiation heats up gas clumps and suppresses SF (probably 
more efficiently because there is no well-defined disk)

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010
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Temperature Slice

Temperature 
profile, 20 kpc

S-Fbck only S-Fbck + R/M-Fbck

S-Fbck + R/M-Fbck

S-Fbck only

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



SF and BH Accretion History

www.jihoonkim.org

● Radiation also regulates the accretion on to the MBH

● Jets should make more impact with no well-defined gas disk

SFH (in a 70 kpc sphere centered on the MBH) BHAH

S-Fbck only S-Fbck only

S-Fbck + R/M-Fbck

S-Fbck + R/M-Fbck

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



Conclusion:  We are pushing the limit!

●  Various components for understanding the physics of galaxy 
formation are being pieced together in AMR: 

    - Proper treatment of MC formation & feedback
    - Proper treatment of MBH accretion & feedback

●  Preliminary results very encouraging:

    - Stellar and MBH processes in one self-consistent framework
    - Radiation from MBH regulates SF and its own growth
    - Much more to come!

- Kim, Wise, Alvarez, & Abel (2010) in prep.

www.jihoonkim.org

- Kim, Wise, & Abel (2009) ApJL 694 L123
HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010
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Projection along L, 100 Myrs, 20 kpc

Density Projection Along L

● Too early to compare morphological differences, yet

S-Fbck only S-Fbck + R/M-Fbck

HIPACC-UCSC 07/28/10
Wednesday, July 28, 2010



MBH Thermal Feedback

PR
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Galaxy = Gas + Stars + MBH + DM, etc.

www.jihoonkim.org

M51/ HST ACS, “Whirpool”

Wednesday, July 28, 2010



Merger Sequence

- Kim, Wise, & Abel (2009) ApJL 694 L123
Wednesday, July 28, 2010


