
2010 HIPACC Astro-Computing Summer School

T.J. Cox (Carnegie Observatories)

Galaxy Simulations Using
the N-Body/SPH code

GADGET

1

2

Project 1.1: Code Optimization

PBS batchscript :

While you’re free to email
me, your batch scripts

should really contain your
email address.

Outline
1. Who am I and what am I doing here? My perspective, my

science, and where my focus will be this week

2. An overview of GADGET projects (+other practical - I hope - information)

3. A brief overview of GADGET

4. Adding “Astrophysics” to GADGET

5. Loose Ends ... data structures, analysis, and visualization (w/ P.
Hopkins)

6. What’s next? (higher resolution, new models, and Arepo: the
next generation of code)

3

3. GADGET: A Brief Intro
3.1 The Monte Carlo, N-body approach to solving the CBE

3.2 Gravity calculation

3.3 Integration and time-steps

3.4 Including hydrodynamics with SPH

3.5 The steps Gadget takes to accomplish the above

3.7 Data Structures within Gadget

3.8 Modes of Gadget

3.9 The remaining compile-time and run-time parameters

3.10 Odd and Ends ... Questions

4

Gadget (and other N-body)
Resources

• Gadget Manual - comes with the public download

• Gadget papers: 1 (Springel, Yoshida, & White 2000) and 2 (Springel 2005)

• Hernquist & Katz (1989): TreeSPH (basically, Gadget version 0)

• Josh Barnes: (Barnes & Hut 1985, Barnes’ website, his 1996 Saas-Fee
lectures)

• Volker Spingel’s 2009 IAS Summer School lectures (very technical, but a
thorough introduction to the nitty-gritty)

• Binney & Tremaine, Galactic Dynamics (1987)

• Hands-on experience digging within the code, modifying it, screwing it up
and trying to figure out how to fix it again

5

3.1 Mont Carlo Approach to solving the Collisionless Boltzmann Equation

6

Galaxies are collisionless systems; t_relax ~ (N/8LnLambda) t_cross (see
Binney & Tremaine for a nice discussion of this)

3.1 Mont Carlo Approach to solving the Collisionless Boltzmann Equation

7

Gravitational softening within
some scale accounts for finite N.
Gadget uses spline kernel.

3.1 Mont Carlo Approach to solving the Collisionless Boltzmann Equation

8

What should the gravitational softening be?
unfortunately, this isn’t an easy question to answer.

* To zeroth order, collisionless criterion suggest it should depend on N and
t_cross

* Cosmological simulations often employ simple criterion based upon the
mean inter-particle spacing (~1/20th or so)

* Power et al. (2003) present a nice discussion and argue for values based on N
and the size of the DM halo

3.1 Mont Carlo Approach to solving the Collisionless Boltzmann Equation

9

What should the gravitational softening be?
unfortunately, this isn’t an easy question to answer.

* To zeroth order, collisionless criterion suggest it should depend on N and
t_cross

* Cosmological simulations often employ simple criterion based upon the
mean inter-particle spacing (~1/20th or so)

* Power et al. (2003) present a nice discussion and argue for values based on N
and the size of the DM halo

While these estimates are useful
starting points, there is NO definitive

way to know what the softening should
be outside of performing detailed

numerical experiments.

10

3.1 Mont Carlo Approach to solving the Collisionless Boltzmann Equation

What should the gravitational softening be?
unfortunately, this isn’t an easy question to answer.

Compile-time options from within the Makefile:

Parameter file options:

3.1 Mont Carlo Approach to solving the Collisionless Boltzmann Equation

11

What should the number of particles, N, be?

3.1 Mont Carlo Approach to solving the Collisionless Boltzmann Equation

12

What should the number of particles, N, be?

* The answer to this question is easy - as large as possible!

3.1 Mont Carlo Approach to solving the Collisionless Boltzmann Equation

13

What should the number of particles, N, be?

* The answer to this question is easy - as large as possible!

Of course, N_simulated will always (at

least for the near future) be much smaller than
N_actual, so the only way to know
what affect the choice of N plays on
your results is to perform detailed

numerical experiments.

3.1 Mont Carlo Approach to solving the Collisionless Boltzmann Equation

14

What should the number of particles, N, be?

An example:

A current “typical” run (moderately high resolution, but quick enough to run numerous
runs) has 1 million DM particles, 300k gas and collisionless disk particles, and 100k bulge
particles. The gravitational softening was 70 pc for all baryonic components and 250 pc
for the DM.

-> isolated galaxy evolved for 3 Gyr: 5 days on 8 processors

-> major merger between two of these: 45 days on 32 processors

Highest resolution mergers:

25 million total / 1 million gas - ~4 months to completion (128 processors)

15 million total / 3 million gas - still running after 6 months (48 processors)

3.3 Gravity calculation

15

3.3 Gravity calculation

16

3.3 Gravity calculation

17

Gadget2 can also calculate
gravitational forces via the
TreePM method.

3.3 Gravity calculation

18

Compile-time options from within the Makefile:

Parameter file options:

3.2 Integration and time-step issues

19

Leapfrog integrator (requires a single force computation, conserves phase
space/symplectic, and is time reversible)

drift
kick
drift

see Quinn et al. (1997) for
much more detail and a much
better description

3.2 Integration and time-step issues

20

the situation can improved
with timesteps chosen in a
factor of 2 hierarchy, see, e.g.,
Quinn et al. (1997)

3.2 Integration and time-step issues

21

Compile-time options from within the Makefile:

Parameter file options:

3.2 Integration and time-step issues

22

Compile-time options from within the Makefile:

Parameter file options:

obsolete in Gadget 2

3.2 Integration and time-step issues

23

Compile-time options from within the Makefile:

Parameter file options: Be Careful with this default
value!

24

3.2 Integration and time-step issues

cautionary tale:

Wuyts et al.
(2010) have
studies the
compact
remnants forms
from z~2 gas-rich
mergers

25

3.2 Integration and time-step issues

cautionary tale:

Wuyts et al.
(2010) have
studies the
compact
remnants forms
from z~2 gas-rich
mergers

26

3.2 Integration and time-step issues

cautionary tale:

Wuyts et al.
(2010) have
studies the
compact
remnants forms
from z~2 gas-rich
mergers

When looking at structure at/near your
resolution limit, you need high integration

accuracy!

3.4 Including hydrodynamics via SPH

27

* Nice discussion from Tom
Abel yesterday about
various perils of SPH and
the new formulation rpSPH

* And from Tom Quinn this
morning so this will be
brief.

3.4 Including hydrodynamics via SPH

28

3.4 Including hydrodynamics via SPH

29

automatic

3.4 Including hydrodynamics via SPH

30

As both Tom Abel and Tom Quinn have mentioned, there are many
formulations of SPH, specifically how you symmetrize the Kernel or the
pressure terms.

Gadget uses an entropy formulation derived with a variational approach
that alleviates some of the problems associated with varying smoothing
lengths (see Springel & Hernquist 2002).

Parameter file options:

3.6 The steps GADGET takes to accomplish the above

31

A brief outline of the modules that Gadget uses to perform the
aforementioned processes:

main.c begrun.c

run.c
(the primary workhorse of Gadget)

drifts particles

(accel.c)

writes log information

(read parameter file, opens all output files, sets the
system of units, and calls init.c which reads the initial
conditions file, which is actually performed in read_ic.c,
and sets all the structures within Gadget)

updates tree (where needed)

computes accelerations

kicks particles

(saves snapshot first, then moves particles in predict.c)

(domain.c)

(timestep.c)

3.6 The steps GADGET takes to accomplish the above

32

A brief outline of the modules that Gadget uses to perform the
aforementioned processes:

main.c begrun.c

run.c
(the primary workhorse of Gadget)

drifts particles

(accel.c)

writes log information

(read parameter file, opens all output files, sets the
system of units, and calls init.c which reads the initial
conditions file, which is actually performed in read_ic.c,
and sets all the structures within Gadget)

updates tree (where needed)

computes accelerations

kicks particles

(saves snapshot first, then moves particles in predict.c)

(domain.c)

(timestep.c)

3.6 The steps GADGET takes to accomplish the above

33

(accel.c)
computes accelerations

compute gravitational acceleration in gravtree.c

determine SPH density in density.c

compute hydrodynamic forces in hydra.c

3.6 The steps GADGET takes to accomplish the above

34

(accel.c)
computes accelerations

compute gravitational acceleration in gravtree.c

determine SPH density in density.c

compute hydrodynamic forces in hydra.c

It is fairly straightforward to add a fixed potential to a Gadget
simulation:

* gravtree.c/gravity_tree walks tree to compute the gravitational
acceleration for each particle and stores this in P[i].GravAccel[j]

* Loop through the particle a second time and add any additional
acceleration you desire.

3.6 The steps GADGET takes to accomplish the above

35

(accel.c)
computes accelerations

compute gravitational acceleration in gravtree.c

determine SPH density in density.c

compute hydrodynamic forces in hydra.c

other forces or energies can be included (cooling,
star formation feedback, etc.)}

3.7 Data Structures within Gadget

36

There are three primary data structures within Gadget

* All.(xx) = global variables stored on ALL processors

* P[i].Pos[j],Vel[j], = particle information, unique to each
processor

* SphP[i].Entropy,Pressure, ...= SPH particle information, unique
to each processor

=> see allvars.h for a complete listing of all structure variables

3.8 Cosmological Simulations with Gadget

37

Makefile and parameter settings that need to be changed:

Compile-time options from within the Makefile:

Parameter file options:

38

3.9 The remaining parameters

39

The remainder of Gadget compile-time and parameter file options

Compile-time options from within the Makefile:

3.9 The remaining parameters

40

The remainder of Gadget compile-time and parameter file options

Compile-time options from within the Makefile:

always recommended

3.9 The remaining parameters

41

The remainder of Gadget compile-time and parameter file options

Compile-time options from within the Makefile:

3.9 The remaining parameters

42

The remainder of Gadget compile-time and parameter file options

Compile-time options from within the Makefile:

3.9 The remaining parameters

43

The remainder of Gadget compile-time and parameter file options

Parameter file options:

3.9 The remaining parameters

44

The remainder of Gadget compile-time and parameter file options

Parameter file options:

checkpoint

45

Restarting from a Checkpoint

PBS batchscript :

add a “1” to restart from the last
checkpoint - or you can add “2” to start
from the last snapshot, but changes are
also needed in the parameter file too

3.9 The remaining parameters

46

The remainder of Gadget compile-time and parameter file options

Parameter file options:

3.9 The remaining parameters

47

The remainder of Gadget compile-time and parameter file options

Parameter file options:

} with

3.9 The remaining parameters

48

The remainder of Gadget compile-time and parameter file options

Parameter file options:

3.10 Odds and Ends

49

Questions?

How are any tests going?

