### Galaxy Formation: Mergers and Accretion

Benjamin L'HUILLIER

Françoise COMBES, Benoît SEMELIN LERMA, Observatoire de Paris

Galaxy Formation Workshop, UCSC 2010/08/16

<ロト <四ト <注入 <注下 <注下 <

|         | Multizoom Simulations | Galaxy Detection and Tracking<br>00000 | Conclusions and perspectives |
|---------|-----------------------|----------------------------------------|------------------------------|
|         |                       |                                        |                              |
|         |                       |                                        |                              |
| Outline |                       |                                        |                              |

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

### 1 Galaxy Growth

2 Multizoom Simulations

Galaxy Detection and TrackingHow to detect galaxies?



Mergers vs Accretion Fractions

Conclusions and perspectives

### Galaxy Growth

#### Galaxy Formation

- Two modes of galaxy growth:
  - Mergers of galaxies,
  - Accretion of gas from the intergalactic medium.
- Goal: Quantify the baryonic mass assembled through mergers and gas accretion
  - Detection of structures at each timestep
  - Time tracking: merger tree building

Mergers vs Accretion Fractions

Conclusions and perspectives

# Multizoom Simulations

#### Multizoom simulations (Semelin & Combes 2005)

- TreeSPH code with DM, stars and gas particles
- Initially: cubic cosmological simulation
- Resimulation of spherical regions of interest at higher resolution
- In resimulated regions, particles enter the box: number of particles is *not constant*

#### Simulation parameters

- $R_{box} = 8.60 \,\mathrm{Mpc}$
- $t_{end} = 9.1 \, \text{Gyr}$
- $N_{\rm part} \sim 14\,{
  m M}$
- $m_{\rm DM} = 1.4 \times 10^8 \, {\rm M}_{\odot}$
- $m_{\rm b} = 3 \times 10^7 \, {
  m M}_{\odot}$
- $\varepsilon_{\rm soft} = 6.75 \, \rm kpc$

|                   | Multizoom Simulations | Galaxy Detection and Tracking<br>•0000 | Conclusions and perspectives |
|-------------------|-----------------------|----------------------------------------|------------------------------|
| How to detect gal | axies?                |                                        |                              |
| Galaxy            | Detection             |                                        |                              |

#### Structure Finder

• Hierarchical finder to keep track of the structures during mergers: AdaptaHOP (Aubert et al. 2004, Tweed et al. 2009)

- Modifications to detect gas and stars in galaxies
- Parameter study:  $\rho_{T}$ , other parameters?





500

8.3 Cyr





ectives

Galaxy Growth

Multizoom Simulation

Galaxy Detection and Tracking

Mergers vs Accretion Fractions

Conclusions and perspectives

How to detect galaxies?

# Merger tree of a galaxy (baryons)



E 990

Mergers vs Accretion Fractions

Conclusions and perspectives

# Mergers vs Accretion Fractions

#### How to compute Accretion and Mergers?

- Computation of the merger tree of each main galaxy at last snapshot
- At every snapshot, each particle is assigned either to a structure or to the background.
- Where do particles come from?
  - particles coming from background: Accretion
  - particles coming from another (sub-)structure: Merger
- Particles can also leave the structure: evaporation or disruption

#### Accretion fraction (baryons)

| Galaxy                           | 1     | 2      | 3      | 4    | 5      | 6    |
|----------------------------------|-------|--------|--------|------|--------|------|
| Mass $(10^{11}\mathrm{M}_\odot)$ | 107.5 | 244.81 | 140.81 | 1.73 | 143.40 | 8.98 |
| Accretion fraction               | 1.04* | 0.65   | 0.67   | 0.52 | 0.95   | 0.71 |

Mergers vs Accretion Fractions

Conclusions and perspectives

### Mass history of a galaxy



Figure: Mass evolution of the largest structure in a cluster < E> E - Sqc

# Mass history of a galaxy



Mergers vs Accretion Fractions

Conclusions and perspectives

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

### Conclusions and perspectives

#### Conclusion

- Using AdaptaHOP enables baryonic structures tracking
- Baryonic mass assembly seems to be dominated by accretion

#### Perspectives

- Further parameter study
- Statistical study of the mass accretion,
- Influence of the environment:
  - Accretion and merger fractions
  - Star formation history
  - Baryonic fraction and gas fraction