The Nature of Star Formation in z ~ 2 Galaxy Disks

Mark Krumholz (UCSC)

Collaborators:

Andi Burkert (USM), Avishai Dekel (HU), Mike Fall (STScI), John Forbes (UCSC), Chris Matzner (Toronto), Jonathan Tan (Florida)

Outline

- Theory of gravitational instabilitydominated disks
- Formation of giant clumps and clusters
- Feedback in giant clumps

Why Consider GI in High z Galaxy Disks?

- Observed velocity dispersions are σ ~
 50 km s⁻¹ (e.g. Cresci+ 2009), but SNe unable to drive σ >~ 20 km s⁻¹ (Joung & MacLow 2009)
- Turbulence no weaker in outer disks with no SF than in inner disks with SNe
- Accretion rates larger at z ~ 2 by a factor of ~100 ⇒ much larger contribution to energy budget

Energy Balance in Q ~ 1 Disks

- Accretion onto disk edge raises surface density (Q \)
- Radiative shocks reduce velocity dispersion (Q \)
- Gravitational instability transports *j* out, mass in, and generates turbulent motion (Q 1)
- Gas turns into stars (almost no effect on Q)

Marginal stability equation determines \mathcal{T} , which in turn determines evolution of all other quantities

Steady State Disks

- For powerlaw rotation curves, family of steady-state solutions exists
- Solution depends on gas fraction and accretion rate; for flat rotation

curve:

$$\sigma = \frac{1}{\sqrt{2}} \left(\frac{3G\dot{M}_{\text{ext}}}{2f_g} \right)^{1/3}$$

• Velocity dispersion set by accretion rate and gas fraction only, and gas fraction relevant only if $\sigma_* \approx \sigma_{gas}$

Non-Steady GI Disks

Numerical result: disks out of steady state evolve into the steady state solution in ~1 viscous time

Evolution of Velocity Dispersions with z

From typical accretion rate as a function of halo mass and z (Bouche+ 2009), we can compute v/σ

Evolution of Toomre Mass

Toomre mass $M_T = \sigma^4 / G^2 \Sigma \Rightarrow$ higher accretion rate at high z produces higher σ , higher $M_T \Rightarrow$ giant clumps

Feedback in Giant Clumps

(Krumholz & Dekel 2010)

- Supernovae insufficient to disrupt ~10⁹ M_☉ clumps (Dekel+ 2009)
- Winds, ionized gas unable to produce σ ~ 20 km s^{-1} needed for virial balance
- Fraction of GC mass turned into stars determined by stellar radiation
 pressure (Krumholz & Matzner 2009; Murray, Quataert, & Thompson 2009; Fall, Krumholz, & Matzner 2010)

When is Radiation Pressure Important?

(Krumholz & Matzner 2009)

Importance of RP in clusters in M82 (blue), Antennae (red), Orion (brown), Arches (green)

- RP force >> gas pressure force when
- $\zeta = 6.2 \times 10^{-2} n_2^{2/3} S_{49}^{2/3} \gg 1$
- RP-driven expansion stalls at radius $r_{\rm st} = 8.9 n_2^{-1/2} S_{49}^{1/4}$ pc
- Ex. R136: $n_2 \sim 10^3$, $S_{49} \sim 10^2 \Rightarrow \zeta \sim 100$, $r_{st} \sim 1 \text{ pc}$

Star Formation Efficiency from Radiation Pressure

(Fall, Krumholz, & Matzner 2010)

- As SF proceeds and SFE rises, S₄₉ rises, n₂ drops, r_{st} rises
- When r_{st} > R_{cl}, mass is ejected
- Result:

$$egin{array}{rcl} \mathcal{E} &=& rac{\Sigma}{\Sigma+\Sigma_{
m crit}} \ \mathcal{E}_{
m crit} &pprox& rac{10\langle L/M_*
angle}{3\pi Gc} \end{array}$$

SFE vs. Σ , computed using RP feedback for the <L/M_{*}> value for a zero age stellar population

Old Stars, Young Stars

- <L/M_{*}> ~ constant for ~3 Myr, then declines
- <L/SFR> ~ rises for ~3 Myr, then remains constant
- In a giant clump, t_{cr}
 ~ 15 Myr ⇒
 <L/SFR> constant,
 <L/M*> declining:
 old stars limit; not
 like modern SF

<L/SFR> and <L/M_{*}> vs. time since onset of SF (Krumholz & Tan 2007)

Efficiency vs. SFR

(Krumholz & Dekel 2010)

E depends on
 <L/M_{*}> ∝
 SFR/M_{*} in old
 stars limit

 Low *E* and disruption likely only for large values of

 $\epsilon_{\rm ff} \equiv \frac{M_{*}}{M_{\rm gas}/t_{\rm ff}}$

Measuring ϵ_{ff}

Depletion time as a function of Σ_{H2} for 2 local galaxies (left, Wong & Blitz 2002) and as a function of L_{HCN} for a sample of local and z ~ 2 galaxies (right, Gao & Solomon 2004, Gao et al. 2007)

Observed Value of ε_{ff}

Clouds convert ε_{ff} ~1% of their mass to stars per t_{ff}, regardless of density or environment (Tan, Krumholz, & McKee 2006; Krumholz & Tan 2007; Evans et al. 2009)

ε_{ff} and the Kennicutt Law

(Krumholz, McKee, & Tumlinson 2009)

Implication for Giant Clumps

Summary

- Disks likely dominated by GI over most of galaxy formation
- Velocity dispersion and clumping scale set by GI
- Resulting giant clumps at z ~ 2 are resistant to disruption unless SF at high z is unlike any in the local universe, and is off the Kennicutt law