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Dynamical imprint of galaxy formation

-Violent relaxation in mergers is
incomplete (Lynden-Bell 1967).

-Memory of ICs encoded in
integrals of motion (IOM).

-Time-dependence/perturbations
-> diffusion in IOM phase space.

-Crossing of orbital boundaries
-> erasure of ICs (relaxation).

Stellar orbits are the building blocks
of galaxies (images: Poon & Merritt 2001)

Orbital phase space need not be
uniformly populated (image: van den
Bosch et al. 2008).



Dynamical information in real galaxies

Image: http://seds.org/~spider/ngc/ngc.cgi?NGC4365
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Gomez et al. 2010

The stellar population of the NGC 4365 KDC is
NGC 4365: SAURON image indistinguishable from that of the outer galaxy.




allipl

0
ARA (arcsec)

Proctor
et al. 2009



Spherical potentials Axisymmetric potentials

-Energy, angular momentum
conserved -> orbit confined
o plane

|

-Rosettes (precessing ellipses
uniformly fill annulus ro < r<ry
over long times

-Cenftrifugal barrier shields
star from center of potential

Binney & Tremaine 2008



3D triaxial potentials

Box Inner long-axis tfube  Short-axis fube Outer long-axis tube

Binney and Spergel 1982;
figure from Hoffman et al. 2010

Poon & Merritt 2001
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Origin of the orbital structure - effect of a CMC

Merritt &
Valluri 1997
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Origin of the orbital structure

Barnes & Hernquist 1996,
Hopkins et al. 2009
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KDCs in 15-207% gas remnants
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SAURON data
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NGC4365 - van den Bosch et al. 2008
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NGC 4365 - comparison of 3D structure with simulations
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Constraints from outer kinematics

Proctor et al. 2009 Coccato et al. 2009



Outer kinematics IT
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More general formation scenarios

1) Complete exploration of merger phase space

3) Multiple mergers /

2) Bulge formation through cosmologically motivated
Clump migr'aTion in “wild disks" sequences

Ceverino et al. 2009 Weil & Hernquist 1996



Binary SMBHs in collisionless galactic nuclei

NGC 3032

Requirements: Integrate cuspy system with N 2 107-% for up to 500-1000 tg,,
suppress relaxation enough to be in empty loss cone regime.

Ideal code: Pure triaxial NBSCF (no kicks) until initial spherical loss cone
cleared out, switching to MCSCF after that.




The Self-consistent field (SCF) method
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Most astrophysical systems
modeled with N-body simulations
undergo brief episodes of rapid
evolution, long periods of slow
evolution (t,, > ty,).



Binary S/IMBHs in collisional nuclei

Milosavljevic & Merritt 2003
Sharp phase space gradients near the
loss cone.

Requirements: Integrate cuspy system with N 2 107 for up to
500-1000 tayn . SUPpress relaxation enough to be in empty
loss cone regime and accurately treat 2-body relaxation.

Ideal code: Spherical, triaxial MCSCF with Henon kicks (note:
unlike Spitzer MC, Henon method does not require a
Maxwellian distributionl).




Relaxation in N-body simulations
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Fig. 13

Hernquist & Ostriker 1992




Evolution owing to time
fluctuations of coefficients
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Temporal smoothing

Figure 14 motivates a modification to the SCF method that would be impossible or, at best, very difficult to implement in N-body
codes, which we refer to as “temporal smoothing.” That is, one could imagine setting 45, equal to the global time-average of the
values plotted in Figure 14, and then integrating particle orbits in this fixed potential. As implied earlier, particle energies would
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FiG. 14—Expansion coefficient in a purely radial version of the run shown in Fig. 10, as a function of time. 4, differs from the value of 4,4, given by eq. (2.33)
by a constant factor so that Ap, would be precisely one in the continuum limit.

“Monte-Carlo” implementation

1) Initialize {my, ry, vi}. 4) Apply Henon kicks.

2) Compute a(r) from eq'n (B).
3) Integrate each particle’s orbit
separately through dt=et, .

5) Go back to step 2.




Suppressing relaxation with rare potential updates

MCSCF w/ Henon kicks MCSCF, no kicks NBSCF, no kicks

Lagrange radii
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Plummer, N = 1%, (n, 1) =(6,0) N=10°%(n,I)__=(6,4) N=10%(n,1)__=(6,4)
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Energy conservation is
currently an issue for long-
term integrations of

10%- 10° dynamical times.




Summary

-Merger model predicts a characteristic, physically
intuitive orbital structure (though not necessarily
unique), observable with SAURON + SMEAGOL

-Power of direct comparisons with dynamical models of
observed systems: Physical intuition, some features
detectable only this way

-Need for extension to more general formation models -
cosmological merger trees, smooth/clumpy gas
accretion, ...

-SCF / MC technique ideal for studying nuclear kinematics
of SMBH binary nuclei; code under development.



