Mergers vs. Cold Flows: How do Black Holes get their Gas?

Jillian Bellovary University of Washington

Collaborators: Fabio Governato, Tom Quinn, Alyson Brooks, James Wadsley, Marta Volonteri

Mergers, or...?

What role do they really play?

GASOLINE

- SPH *N*-body code (Wadsley et al. 2004)
 - Star formation, supernova feedback, metal diffusion, metal line cooling
 See Governato+09,10; Brooks+07,09; Zolotov+09; Pontzen+08,10; Stinson+06
- New additions:
 - Seed BH formation
 - BH mergers
 - BH accretion
 - BH blastwave feedback

Gas enters the virial radius, shocks, and falls in to the disk

Low-mass galaxies simply accrete cold gas

Even when a shock develops, cold filaments can penetrate the shock

Of course, mergers deliver gas as well

Cold accretion

low mass, filaments

Shocked accretion

high mass

Clumpy accretion

mergers

How do Black Holes get their gas?

Cold accretion

low mass, filaments

Shocked accretion

high mass

Clumpy accretion

mergers

Seed BH Prescription

Forming Seed BHs

- Form seed black holes out of cold, dense, zero-metallicity gas
- Seed mass same as gas particle $(10^4 10^6 M_{\odot})$
- Probability of forming star or black hole Purely local prescription

Seeds form early

MW galaxy to z=0

A few % of L/L_{edd}

L_{BOL} comparable to a Seyfert galaxy

MW galaxy to z=0

Once major mergers begin, the central BH predominantly accretes clumpy gas

MW galaxy to z=0

High redshift galaxy:

At z = 6: $M = 1.4 \times 10^{11} M_{\odot}$ $M_{BH} = 6.4 \times 10^{6} M_{\odot}$ SFR = 20 M_{\odot} /yr

High z BH history

High z gal to z=6

High z gal to z=6

What does it all mean...

BHs accrete clumpy gas more efficiently than cold gas

Summary

- A Milky Way-like galaxy's BH grows mainly through clumpy accretion (i.e. gas from mergers)
- Clumpy gas more efficient at fueling BHs
- BUT! secular processes (i.e. smooth gas accretion) can fuel a quasar at high z!

Time Delays

Normalized Time Delay

High z gal to z=6

Bulge Morphology

