Galactic-Scale Winds

J. Xavier Prochaska

Inster(stellar+galactic) Medium Program of Studies [IMPS] UCO, UC Santa Cruz

Kate Rubin (IMPS, MPIA) Dan Kasen (UCSC, UCB/LBL)

Feedback

0	9 \varTheta	uery Resu	lts				e				
🖉 🔊 🕐 (http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?db_key=AST&db_key=PRE&qform=AST&arxiv_sel=astrc 🗟 🏫 🛛 🗸 🥵 mac screen capture 🔍											
Google Groups UCSC Astronomy Co ADS Google Calendar News + Santa Cruz + Astro + Bookmarks + GRB + Astrophysics Author Query Results Image: Santa Cruz + Image: Santa Cruz + Image: Santa Cruz + Astro + Bookmarks + GRB + Astrophysics Image: Santa Cruz + Ima											
SAO/NASA Astrophysics Data System (ADS) Query Results from the ADS Database Retrieved 200 abstracts, starting with number 1. Total number selected: 1215. MADS Search: Refereed, 2010, "feedback" or "wind" Sort options										Sign on om of page	
#	Bibcode Authors	Score Date Title		<u>List</u> <u>Acc</u>	of Links ess Contro	ol Help					
1	2010MNRAS.406.23250 Oppenheimer, Benjamin D.; Davé, Romeel; Kereš, Dušan; Fardal, Mark; Katz, Neal; Kollmeier, Juna A.; Weinberg, David H.	1.000 08/2010 Feedback and recycled	wind	A accre	E E etion: asse	X mbling th	$\frac{\mathbf{R} \ \mathbf{C}}{\mathbf{c}}$ e z = 0 galaxy ma	U ss function			
2	 2010MNRAS.406.2249W Weinmann, Simone M.; Kauffmann, Guinevere; von der Linden, Anja; De Lucia, Gabriella 	1.000 08/2010 Cluster galaxies die ha	rđ	Δ	<u>E</u> E	X	<u>R</u> <u>C</u>	U			
3	2010MNRAS.406952S Smith, Nathan; Povich, Matthew S.; Whitney, Barbara A.; Churchwell, Ed; Babler, Brian L.; Meade, Marilyn R.; Bally, John; Gehrz, Robert D.; Robitaille, Thomas P.; Stassun, Keivan G.	1.000 08/2010 Spitzer Space Telescop	e obse	A ervati	E E ions of the	X Carina ne	R C ebula: the steady n	U narch of feedb	ack-driven star format	ion	
4	2010MNRAS.406822M McCarthy, I. G.; Schaye, J.; Ponman, T. J.; Bower, R. G.; Booth, C. M.; Dalla Vecchia, C.; Crain, R. A.; Springel, V.; Theuns, T.; Wiersma, R. P. C.	1.000 08/2010 The case for AGN feed	back i	A in gai	E E laxy group	X os	RC	Ш			
5	 2010JASTP72.1019F Fukazawa, Keiichiro; Aoyama, Tomoharu; Ogino, Tatsuki; Yumoto, Kiyohumi 	1.000 08/2010 Response of the reconr	ection	A n elec	E etric field a	and polar (R cap potential to the	U e IMF and vel	ocity of solar wind		

Cool Gas Outflows

Blue-shifted absorption reveals outflowing material Weiner+09 (see Koo's talk tomorrow?)

Cool Gas Outflows

Blue-shifted absorption reveals outflowing material

Tremonti+08, Weiner+09, Rubin+09

Rupke+05, Martin06, Chen+10

Steidel+96 Lowenthal+97 Pettini+02 Steidel+10

Distance (dwind)

Distance (dwind) Near (e.g. 100 pc)?

Distance (dwind)

Near (e.g. 100 pc)? Far (e.g. 10 kpc)?

Distance (dwind)

Near (e.g. 100 pc)? Far (e.g. 10 kpc)? Near and Far?

Distance (dwind)

Near (e.g. 100 pc)? Far (e.g. 10 kpc)? Near and Far? Extremely far!! (see Rubin+10, ApJ, 712, 547)

Distance (dwind)

Near (e.g. 100 pc) Far (e.g. 10 kpc) Near and Far

Distance (d_{wind}) Distribution (Ω)

Near (e.g. 100 pc) Far (e.g. 10 kpc) Near and Far

Mass flux (of the wind) $\dot{M}_{
m w} \propto \Omega \ d_{
m wind} \ v_{
m wind}$

Mass flux (of the wind) Power (of the wind) $\dot{M}_{
m w} \propto \Omega \ d_{
m wind} \ v_{
m wind}$ $\dot{E} \propto \dot{M}_{
m w} \ v_{
m wind}^2$

Mass flux (of the wind) **Power** (of the wind) Momentum (of the wind) $\dot{P} \propto \dot{M}_{
m w} v_{
m wind}$

 $M_{
m w} \propto \Omega \; d_{
m wind} \; v_{
m wind}$ $\dot{E} \propto \dot{M}_{\rm w} v_{\rm wind}^2$

SF Galaxy

Earth

Mass flux (of the wind) **Power** (of the wind) Momentum (of the wind) $\dot{P} \propto \dot{M}_{
m w} v_{
m wind}$

 $M_{
m w} \propto \Omega \; d_{
m wind} \; v_{
m wind}$ $\dot{E} \propto \dot{M}_{\rm w} v_{\rm wind}^2$

What drives the flow?

Mass flux (of the wind) **Power** (of the wind) Momentum (of the wind) $\dot{P} \propto \dot{M}_{
m w} v_{
m wind}$

 $M_{
m w} \propto \Omega \; d_{
m wind} \; v_{
m wind}$ $\dot{E} \propto \dot{M}_{\rm w} v_{\rm wind}^2$

<u>____</u>

What drives the flow? What is its age?

Earth

P-Cygni (Cartoon)

P-Cygni (Cartoon)

Earth

P-Cygni (Cartoon)

1D Spectrum for Mgll 2796

P-Cygni (Cartoon)

1D Spectrum for Mgll 2796

P-Cygni (Cartoon)

P-Cygni (Cartoon)

P-Cygni (Cartoon)

P-Cygni (Cartoon)

P-Cygni (Cartoon)

(Idealized) Cool Gas Outflow Models

Inspired by the Rubin et al. observations that follow

Prochaska, Kasen, & Rubin, ApJ, (nearly) submitted

(Idealized) Cool Gas Outflow Models

Inspired by the Rubin et al. observations that follow

Radiative Transfer

Prochaska, Kasen, & Rubin, ApJ, (nearly) submitted

Wind Profile (Fiducial Model)

The key quantity is the optical depth profile

Wind Profile (Fiducial Model)

The key quantity is the optical depth profile

'Standard' P-Cygni profiles

'Standard' P-Cygni profiles

'Standard' P-Cygni profiles

Absorption at $dv \ge -200$ km/s has been 'filled-in'

'Standard' P-Cygni profiles

Absorption at $dv \ge -200$ km/s has been 'filled-in'

Standard analysis would (i) require partial covering of the source, (ii) recover the wrong optical depth, and (iii) miss gas at v~0 km/s

Prochaska, Kasen, & Rubin, ApJ, (nearly) submitted

- Consider the surface brightness of observed flux
 - Scattered photons
 - And, of course, the source

Prochaska, Kasen, & Rubin, ApJ, (nearly) submitted

- Consider the surface brightness of observed flux
 - Scattered photons
 - And, of course, the source

Prochaska, Kasen, & Rubin, ApJ, (nearly) submitted

- Consider the surface
- brightness of observed flux
 - Scattered photons
 - And, of course, the source
- At v=-100 km/s, all of the emission is scattered photons
 - From the front side of the wind
 - Concentrated near the source
 - But, extending to edge of the wind

- Consider the surface
- brightness of observed flux
 - Scattered photons
 - And, of course, the source
- At v=-100 km/s, all of the emission is scattered photons
 - From the front side of the wind
 - Concentrated near the source
 - But, extending to edge of the wind
- At larger velocities, the source dominates
 - But scattered photons from the backside of the wind contribute

- Consider the surface
- brightness of observed flux
 - Scattered photons
 - And, of course, the source
- At v=-100 km/s, all of the emission is scattered photons
 - From the front side of the wind
 - Concentrated near the source
 - But, extending to edge of the wind
- At larger velocities, the source dominates
 - But scattered photons from the backside of the wind contribute

Fell Transitions

Fell Transitions

Prochaska, Kasen, & Rubin, ApJ, (nearly) submitted

Fell* Emission (Fiducial Model)

Fell* Emission (Fiducial Model)

Similar to MgII emission, but nearly symmetric about v=0km/s

Radiative Transfer: Key Implications

• Line-emission is a generic prediction

- Total equivalent width is roughly zero
 - Every absorbed photon is re-emitted
- Even for dusty, non-isotropic winds
 - Not shown in this talk (trust/ask me)
- Scattered photons can significantly alter absorption profiles
 - Mis-interpret as partial covering, lower optical depth, etc.
 - Insensitive to gas at v ~ 0 km/s (infall?)
 - Be *especially* wary of stacked spectra
- Scattered photons offer an additional (more powerful?) probe of winds
 Size Morphology Kinematics
 - Size, Morphology, Kinematics

The Real Universe

Theoretical wind models are nice and make pretty pictures, but do they even remotely reflect the real Universe?

Disclaimer: The study I just described was post-diction (not prediction)

Rubin, Prochaska, Menard, Murray, Kasen, Koo, Phillips, 2010, ApJL, submitted

The Real Universe

Theoretical wind models are nice and make pretty pictures, but do they even remotely reflect the real Universe?

Disclaimer: The study I just described was post-diction (not prediction)

Rubin, Prochaska, Menard, Murray, Kasen, Koo, Phillips, 2010, ApJL, submitted

The Galaxy (Image)

~5 h⁻¹ kpc

B = 21.7 Bluest of the "blue cloud" SFR ~ 80 M_{\odot}/yr weak [NeV] 3426 emission (AGN host)

Rubin+10, ApJL, submitted

The Galaxy (1D Spectrum)

Star-forming galaxy with blue-shifted absorption lines (Fell, MgII) and nebular emission lines (e.g. [OII], Hb, etc.)

Rubin+10, ApJL, submitted

The Galaxy (Velocity Plots)

MgII: P-Cygni profile with strong emission FeII: Strong resonant-line absorption, modest FeII* emission Rubin+10, ApJL, submitted

The Galaxy (2D Spectrum)

Rubin+10, ApJL, submitted

The Galaxy (Subtracted Spectrum)

Extended emission detected to ~1", i.e. ~7 h⁻¹ kpc

Rubin+10, ApJL, submitted

The Galaxy (Subtracted Spectrum)

Extended emission detected to ~1", i.e. ~7 h⁻¹ kpc

Rubin+10, ApJL, submitted

The Galaxy (Subtracted Spectrum)

Extended emission detected to ~1", i.e. ~7 h⁻¹ kpc First direct constraints on the spatial extent of the flow! Rubin+10, ApJL, submitted

Further Implications

• LBG winds

- Steidel+10 wind model is unlikely to reproduce the observations
 - (They ignored scattered photons)
- Beware of conclusions on the non-existence of gas at v >~ 0 km/s
- Why do many galaxies only show absorption, not emission?
 - Poor data quality
 - Anisotropic winds
 - Bias in galaxy brightness
 - Dust

Future Work

IFU observations

- Constrain the surface brightness profiles
 - ♦ e.g. KCWI, X-Shooter, GMOS
- Constrain the kinematics of this line-emission
- Implement RT analysis of 'realistic' galactic-scale winds
 - Distributed sources
 - Multi-phase gas
 - Dust, etc.

Dust (Fiducial Model)

