The large-scale orientations of disc galaxies

Oliver Hahn

Kavli Institute for Particle Astrophysics & Cosmology SLAC/Stanford University

> Santa Cruz Galaxy Formation Workshop 08/16/2010

with Romain Teyssier Marcella Carollo Cristiano Porciani

Overview

Galaxy formation happens in cosmic context

Main question: are disc galaxies oriented w.r.t. the large-scale structure?

How to define large-scale structure?

Are halo/galaxy orientations correlated with it?

Why bother?

Correlated galaxy orientations = bias for weak lensing (DE surveys) Orientations are a proxy for formation processes

Importance of Alignments for Weak Lensing

Lensing potential

$$\phi(\boldsymbol{\theta}, \chi_s) = \frac{2}{c^2} \int_0^{\chi_s} d\chi \frac{d_A(\chi_s - \chi)}{d_A(\chi_s) d_A(\chi)} \Phi(\chi, d_A(\chi)\boldsymbol{\theta})$$

weak shear is a weighted integral of the **tidal field**:

$$\gamma_1 = \frac{1}{2}(\phi_{,11} - \phi_{,22})$$

 $\gamma_2 = \phi_{,12}$

Observable is total ellipticity

$$\epsilon_{\rm obs} = \gamma + \epsilon_I$$

Correlation function thus becomes

$$\langle \epsilon_{\rm obs} \epsilon'_{\rm obs} \rangle = \langle \gamma \gamma' \rangle + \langle \gamma \epsilon'_I \rangle + \langle \epsilon_I \gamma' \rangle + \langle \epsilon_I \epsilon'_I \rangle \longrightarrow$$
 Contaminant for dark energy structure **GI II Signal for galaxy formation**

Galaxy/Halo Formation & Large-Scale Structure

Peaks exceeding threshold collapse to form virialised galaxies/haloes

The Formation of the Web

(snapshot from simulation with 1024³ particles, 240 Mpc/h periodic box)

Zel'dovich Approximation:

 In 1st order Lagrangian perturbation theory, general perturbations collapse subsequently along 3 axes:

$$\rho(\vec{q}, t) = \frac{\rho(\vec{q}, 0)}{\left[1 - D_{+}(t)\lambda_{1}\right]\left[1 - D_{+}(t)\lambda_{2}\right]\left[1 - D_{+}(t)\lambda_{3}\right]}$$
$$\lambda_{k} \propto \operatorname{eig}\left(\partial_{i}\partial_{j}\Phi\right) \tag{Zel'dovich 1970}$$

- "pancake" formation, $\lambda_1, \lambda_2, \lambda_3$ predict asymptotic morphology.
- In reality this is a multi-scale phenomenon.

Does the large-scale structure influence galaxy formation?

How to quantify LSS?

Use the smoothed tidal field to classify LSS:

Eigenvalue signature describes expansion/contraction:

OH, Porciani, Carollo, Dekel, 2007a/b

Eigenvectors describe direction thereof:

Galactic AM: Tidal Torque Theory

Definition of Angular Momentum

$$\mathbf{J} = \int_{V} \mathrm{d}^{3} r \,\rho(\mathbf{r}, t) \left(\mathbf{r}(t) - \langle \mathbf{r}(t) \rangle\right) \times \left(\mathbf{v}(t) - \langle \mathbf{v}(t) \rangle\right)$$

Use Quasi-Linear Evolution from Zel'dovich Approximation

$$\mathbf{x}(\mathbf{q},t) \equiv \mathbf{q} + \mathbf{L}(\mathbf{q},t) \qquad \mathbf{L} = -D_{+}(t) \nabla \Phi(\mathbf{q})$$
-gravitational potential

Perform series expansion of the gravitational potential, then at first order

$$\mathbf{J} = a^2 \dot{D}_+(t) \epsilon_{ijk} I_{jl} T_{lk}$$

where

$$T_{ij} \equiv -\partial^2 \Phi / \partial q_i \partial q_j$$

tidal tensor (second order term)

moment of inertia tensor

 $I_{ij} \equiv \rho_0 a_0^3 \int_{V_L} \mathrm{d}^3 q \left(q_i - \langle q_i \rangle \right) \left(q_j - \langle q_j \rangle \right)$

Tidal Torques

Linear variation of displacements in real space...

...generates angular momentum in comoving space

Nonzero angular momentum will result if moment of inertia is misaligned with tidal field

True for haloes: AM from misalignment...

Alignment angle:

$$\beta \equiv 1 - \left(\frac{\mathcal{I}_{12}^2 + \mathcal{I}_{23}^2 + \mathcal{I}_{31}^2}{\mathcal{I}_{11}^2 + \mathcal{I}_{22}^2 + \mathcal{I}_{33}^2}\right)^{1/2}$$

I_{ij} in T_{ij} principal axis frame.

At all halo masses:

haloes with largest initial misalignment

acquire highest specific AM

see also Porciani, Dekel & Hoffman (2001)

And what about orientations?

Tidal torque theory result:

$$\mathbf{J} = a^2 \dot{D}_+(t) \epsilon_{ijk} I_{jl} T_{lk}$$

In principal axis frame of the Tidal Tensor:

$$J_1 \propto (\lambda_2 - \lambda_3)I_{23},$$

 $J_2 \propto (\lambda_3 - \lambda_1)I_{31},$
 $J_3 \propto (\lambda_1 - \lambda_2)I_{12}.$

Define (w.l.o.g.) axes v_1 , v_2 , v_3 of T_{ij} so that $\lambda_1 < \lambda_2 < \lambda_3$ then:

J₂ should be largest, i.e. alignment between v₂ and J strongest

(in statistical sample, assuming T and I uncorrelated)

Navarro et al. (2004) find TTT confirmed for isolated galaxies

Are halos preferentially oriented?

Spin orientation:

Shape orientation:

many observations

Adding Baryons: Simulation Set-up

RAMSES AMR zoom simulation

high-res of a single filament ~25Mpc/h in 100Mpc/h box 0.38 h⁻¹kpc physical resolution down to z=0 cooling to 10⁴K, metal enrichment, star formation & supernova feedback

Going from halos to galaxies?

Galaxy-LSS alignments

~100 well-resolved galaxies. shown are synthetic stellar light images, i',r',g' bands with dust

measure their stellar, gas, DM angular momentum & correlate with tidal field

The tidal field seen by the galaxies...

Alignment of Discs with LSS at z=1

- Orientations of disks depend on:
 - mass
 - scale
 - environment density
 - TTT fossil alignment with v₂ for low-mass galaxies in low-density environments!
 - Alignment with v_3 at high masses.
 - Mis-alignment of DM and baryons at high masses

OH, Teyssier, Carollo, 2010

Density Dependence of Alignment at z=1

Low mass galaxies:

Change of alignment with environmental overdensity.

Investigation of its origin currently in progress:

- Reorientation through mergers? (mergers are more frequent in high density regions) - no evidence so far
- Non-linear tides? (tides experienced by galaxies change strongly in non-linear density field)
- Baryon physics? (Ram pressure, accretion difference)

Summary & Conclusion

- Tidal field eigenstructure allows a robust characterization of cosmic large-scale structure
- Using the eigenvectors of the smoothed tidal fields we find a massdependent alignment-signal of halo spins and shapes
- We find a mass-, scale- and density dependent alignment of disc galaxies.
- In particular: (1) fossile TTT predicted alignment at low masses in lowdensity environments. (2) alignment of the most massive galaxies with their surrounding filaments.
- The origin of this scale, mass and density dependence is under investigation. Stay tuned...