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Overview

Galaxy formation happens in cosmic context

Main question: are disc galaxies oriented w.r.t. the large-scale structure?

How to define large-scale structure?

Are halo/galaxy orientations correlated with it?

Why bother?

Correlated galaxy orientations = bias for weak lensing (DE surveys)

Orientations are a proxy for formation processes



Importance of Alignments for Weak Lensing
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Lensing potential

weak shear is a weighted integral 
of the tidal field:

background galaxies

foreground mass
Observable is total ellipticity
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Signal for galaxy formation

Contaminant for dark energy obs.



Galaxy/Halo Formation & Large-Scale Structure
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Peaks exceeding threshold collapse to form virialised galaxies/haloes

Larger scale fluctuations collapse ‘incompletely’ and subseq. along 3 axes
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The Formation of the Web

‣ In 1st order Lagrangian perturbation 
theory, general perturbations collapse 
subsequently along 3 axes:

 

‣ “pancake” formation,                  predict 
asymptotic morphology.

‣ In reality this is a multi-scale 
phenomenon.100 h-1 Mpc

ΛCDM, z=0

ρ(�q, t) =
ρ(�q, 0)

[1−D+(t)λ1] [1−D+(t)λ2] [1−D+(t)λ3]

Does the large-scale structure influence galaxy formation?

(Zel’dovich 1970)

(snapshot from simulation with 10243 particles, 240 Mpc/h periodic box)

λk ∝ eig ( ∂i∂jΦ )

λ1, λ2, λ3

Zel’dovich Approximation:



How to quantify LSS?
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OH, Porciani, Carollo, Dekel, 2007a/b

Use the smoothed tidal field to classify LSS:

Eigenvalue signature describes expansion/contraction: Eigenvectors describe direction thereof:



Galactic AM: Tidal Torque Theory
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Figure 1.2 — Evolution of the boundary R(t) of an overdense k = 1, and an
underdense k = −1 perturbation and the evolution of the mean density (k = 0), i.e.
the background, in an Einstein-de Sitter universe.

Figure 1.2). They slowly decouple from the Hubble expansion of the flat Einstein-
de Sitter universe until they experience a turnaround when their overdensity reaches a
value of δTA � 4.56 and re-collapse. Assuming energy conservation in the recollapsing
phase, the perturbation reaches a virialized equilibrium state with an overdensity
δvir � 177 (see A.3, for more details). These collapsed and virialised perturbations in
the non-collisional regime are the ‘‘dark matter haloes’’.

The given non-linear overdensities can be combined with the results from Eulerian
perturbation theory. It predicts that the density after the time needed to reach
turnaround is δlin

TA � 1.06 and after the time needed to reach virialisation has grown
to δlin

vir � 1.686 in linear approximation.

1.10. The Origin of Angular Momentum in Collapsed Structures

The Zel’dovich approximation introduced in Section 1.8 provides a simple model for
the origin of angular momentum in collapsed structures. The angular momentum of a
density perturbation occupying a volume V that collapses to a virialized structure is, in
full generality, given by

(1.43) J =
�

V
d3r ρ(r, t) (r(t)− �r(t)�)× (v(t)− �v(t)�) ,

where �·� denotes a volume average, i.e. the center of mass and center of velocity. The
bulk velocity �v� does not contribute to the spin angular momentum of the structure,
but only to the orbital angular momentum, so that we will discard of it in the remainder
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and thus yields the main result of tidal torque theory

(1.48) J = a2Ḋ+(t)�ijkIjlTlk +O(q3),

where

(1.49) Iij ≡ ρ0a
3

0

�

VL

d3q (qi − �qi�) (qj − �qj�)

is the moment of inertia tensor, and Tij ≡ −∂2Φ/∂qi∂qj is the deformation tensor
Hence, at first order, spin angular momentum is generated from the misalignment of
the moment of inertia tensor of the proto-galaxy and the tidal tensor evaluated in
Lagrangian space. In a matter-dominated universe, D+ ∝ a ∝ t2/3, so that angular
momentum grows as �J� ∝ t.

Figure 1.3 shows the misalignment angle between the Lagrangian moment of inertia
tensor and the tidal field tensor

(1.50) β ≡ 1−
�
I2

12
+ I2

23
+ I2

31

I2
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+ I2

22
+ I2

33

�1/2

,

where Iij are the components of the moment of inertia tensor Iij in the principal axis
frame of T , as a function of the specific angular momentum of the z = 0 halo for four
different mass bins, as obtained from cosmological N-body simulations (for details of
the simulations see Section 3.2). An angle of β = 1 corresponds to perfect alignment.
Clearly, haloes with a larger misalignment between the two tensors acquire higher
specific angular momentum.

Angular momentum grows until the perturbation undergoes turnaround, where the
lever arm is maximal and angular momentum generation is most efficient.

The emergence of the tidal tensor in the generation of angular momentum for dark
haloes and galaxies could survive in a correlation between spin amplitude and
orientation and the environment in which galaxies formed since the gravitational
contribution is long-ranged. The emergence of such a correlation is difficult, if not
impossible, to describe analytically so that it is best investigated using numerical
simulations of structure formation. For these reasons, using simulations, in Chapter
4, we investigate the correlation of spin amplitude and direction with the large-scale
environment for dark matter haloes.

1.11. The Abundance of Collapsed Objects

Cosmic inflation predicts that the primordial density field is a Gaussian random field
(see also Section 1.3). Thus, it is fully characterised by its variance σ. Dark matter
haloes (and galaxies) originate, in a simplified view, from density perturbations of a
given length scale R that is able to collapse gravitationally over the course of cosmic
time. Such a density perturbation can be described by course-graining the density field
ρ on the scale R, typically by performing a convolution with a spherical top-hat filter.

The variance of the coarse-grained density field associated with a scale R at redshift z
is then

(1.51) σ2(M, a) =
1

2π2

� ∞

0

dk k2 P (k, a) �W 2

TH
(k,M),
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Definition of Angular Momentum

Use Quasi-Linear Evolution from Zel’dovich Approximation

‘‘thesis’’ --- 2009/9/19 --- 14:32 --- page 21 --- #27

1.8. Linear Lagrangian Models: The Zel’dovich Approximation

In contrast to the Eulerian approach, i.e. considering the evolution of density

perturbations at a fixed location in space, the Lagrangian formulation follows the

motion of a fluid element. This formulation of linear perturbation theory is particularly

suited to describe the evolution of the cosmic large-scale. The displacement of a fluid

element from its initial position q can be written in comoving coordinates as

(1.33) x(q, t) ≡ q + L(q, t).

The conservation of mass implies that an initial mass element dm = ρ̄ d
3
q corresponds

to a Eulerian mass element at time t

(1.34) ρ(x, t) d
3
x = ρ̄ d

3
q.

If a bijective mapping between q and x exists (implying that no two trajectories have

crossed, also called ’shell crossing’), then the Eulerian mass-element at time t can be

related to the Lagrangian mass-element at time t by means of a simple coordinate

transformation

ρ(x, t) d
3
x = ρ(q, t) det

�
∂xi

∂qj

�
d
3
q(1.35)

= ρ(q, t) det
�
δij +

∂Li

∂qj

�
d
3
q.(1.36)

Thus, the initial density is connected to the comoving density at time t by

(1.37) ρ(q, t) =
1

det
�

∂xi
∂qj

� =
ρ0

det
�
δij + ∂Li

∂qj

� .

In the limit of small displacements ∂Li/∂qj � 1, a Taylor expansion to linear order

in the displacements yields

(1.38) ρ(q, t) = ρ0

�
1−∇q · L + O

�
(∇q · L)2

��
,

such that in terms of the overdensity δ ≡ ρ/ρ̄− 1 one obtains δ(q, t) � −∇q ·L(q, t).
The Eulerian evolution of density perturbations obeys at linear order the relation

δ(x, t) = D+(t) δ(x, 0), so that we are able to write

(1.39) δ(q, t) � −D+(t)∇q · L(q, 0).

Poisson’s equation for the comoving potential is given by ∆φ = (3/2)H2
0a

2δ, such

that L is related to φ in the following way

(1.40) ∇q · L = −δ(q, t) = − 2
3H

2
0a2

∆qφ.

One easily identifies that the displacement vector L is given by

(1.41) L = − 2
3H

2
0a2

∇qφ ≡ u0(q),
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Figure 1.3 — The misalignment angle between the Lagrangian moment of inertia

tensor and the tidal field tensor as a function of the specific angular momentum of the

z = 0 halo for four different mass bins confirming the predicted generation of angular

momentum in tidal torque theory (From Lee, Hahn & Porciani, 2009a).

of the section. Changing to comoving coordinates x = r/a, ẋ = v/a, this can be

rewritten as

(1.44) J = a5ρ̄(t)
�

Vcomov

d3x (1 + δ(x, t)) (x(t)− �x(t)�)× ẋ(t)

Assuming no shell-crossing, we can employ the Zel’dovich approximation x = q +
L(q, t), where L = −D+(t)∇Φ(q) and Φ =

�
4πGρa2D+

�−1
φ, with Φ the velocity

and φ the gravitational potential. The coordinate transformation from x to q introduces

the Jacobian J = det[∂ix/∂jq]. According to eq. (1.37) ρ̄ (1 + δ(q, t)) = J−1
in the

Zel’dovich approximation, so that we find

J = a5ρ̄(t)
�

VL

d3q (q(t)− �q(t)�+ L(t)− �L(t)�)× L̇(t)(1.45)

= −ρ0a
3
0 a2Ḋ+(t)

�

VL

d3q (q(t)− �q(t)�)×∇Φ(q),(1.46)

where we used that L � L̇ and that a3ρ(t) = a3
0ρ0 for non-relativistic matter in the

last equality. Substituting a series expansion for the potential around �q�

Φ(q) = Φ(�q�) +
∂Φ
∂qi

����
�q�

(qi − �qi�) +(1.47)

+
1
2

∂2Φ
∂qi∂qj

����
�q�

(qi − �qi�) (qj − �qj�) + O(q3)

into the expression for the angular momentum shows that only the second order and

higher terms of the potential remain (the dipole term vanishes in the centre of mass)

24

~gravitational potential

Perform series expansion of the gravitational potential, then at first order
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and thus yields the main result of tidal torque theory

(1.48) J = a2Ḋ+(t)�ijkIjlTlk +O(q3),

where

(1.49) Iij ≡ ρ0a
3

0

�

VL

d3q (qi − �qi�) (qj − �qj�)

is the moment of inertia tensor, and Tij ≡ −∂2Φ/∂qi∂qj is the deformation tensor
Hence, at first order, spin angular momentum is generated from the misalignment of
the moment of inertia tensor of the proto-galaxy and the tidal tensor evaluated in
Lagrangian space. In a matter-dominated universe, D+ ∝ a ∝ t2/3, so that angular
momentum grows as �J� ∝ t.

Figure 1.3 shows the misalignment angle between the Lagrangian moment of inertia
tensor and the tidal field tensor

(1.50) β ≡ 1−
�
I2

12
+ I2

23
+ I2

31

I2

11
+ I2

22
+ I2

33

�1/2

,

where Iij are the components of the moment of inertia tensor Iij in the principal axis
frame of T , as a function of the specific angular momentum of the z = 0 halo for four
different mass bins, as obtained from cosmological N-body simulations (for details of
the simulations see Section 3.2). An angle of β = 1 corresponds to perfect alignment.
Clearly, haloes with a larger misalignment between the two tensors acquire higher
specific angular momentum.

Angular momentum grows until the perturbation undergoes turnaround, where the
lever arm is maximal and angular momentum generation is most efficient.

The emergence of the tidal tensor in the generation of angular momentum for dark
haloes and galaxies could survive in a correlation between spin amplitude and
orientation and the environment in which galaxies formed since the gravitational
contribution is long-ranged. The emergence of such a correlation is difficult, if not
impossible, to describe analytically so that it is best investigated using numerical
simulations of structure formation. For these reasons, using simulations, in Chapter
4, we investigate the correlation of spin amplitude and direction with the large-scale
environment for dark matter haloes.

1.11. The Abundance of Collapsed Objects

Cosmic inflation predicts that the primordial density field is a Gaussian random field
(see also Section 1.3). Thus, it is fully characterised by its variance σ. Dark matter
haloes (and galaxies) originate, in a simplified view, from density perturbations of a
given length scale R that is able to collapse gravitationally over the course of cosmic
time. Such a density perturbation can be described by course-graining the density field
ρ on the scale R, typically by performing a convolution with a spherical top-hat filter.

The variance of the coarse-grained density field associated with a scale R at redshift z
is then

(1.51) σ2(M, a) =
1

2π2

� ∞

0

dk k2 P (k, a) �W 2

TH
(k,M),
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and thus yields the main result of tidal torque theory

(1.48) J = a2Ḋ+(t)�ijkIjlTlk +O(q3),

where

(1.49) Iij ≡ ρ0a
3

0

�

VL

d3q (qi − �qi�) (qj − �qj�)

is the moment of inertia tensor, and Tij ≡ −∂2Φ/∂qi∂qj is the deformation tensor
Hence, at first order, spin angular momentum is generated from the misalignment of
the moment of inertia tensor of the proto-galaxy and the tidal tensor evaluated in
Lagrangian space. In a matter-dominated universe, D+ ∝ a ∝ t2/3, so that angular
momentum grows as �J� ∝ t.

Figure 1.3 shows the misalignment angle between the Lagrangian moment of inertia
tensor and the tidal field tensor
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where Iij are the components of the moment of inertia tensor Iij in the principal axis
frame of T , as a function of the specific angular momentum of the z = 0 halo for four
different mass bins, as obtained from cosmological N-body simulations (for details of
the simulations see Section 3.2). An angle of β = 1 corresponds to perfect alignment.
Clearly, haloes with a larger misalignment between the two tensors acquire higher
specific angular momentum.

Angular momentum grows until the perturbation undergoes turnaround, where the
lever arm is maximal and angular momentum generation is most efficient.

The emergence of the tidal tensor in the generation of angular momentum for dark
haloes and galaxies could survive in a correlation between spin amplitude and
orientation and the environment in which galaxies formed since the gravitational
contribution is long-ranged. The emergence of such a correlation is difficult, if not
impossible, to describe analytically so that it is best investigated using numerical
simulations of structure formation. For these reasons, using simulations, in Chapter
4, we investigate the correlation of spin amplitude and direction with the large-scale
environment for dark matter haloes.

1.11. The Abundance of Collapsed Objects

Cosmic inflation predicts that the primordial density field is a Gaussian random field
(see also Section 1.3). Thus, it is fully characterised by its variance σ. Dark matter
haloes (and galaxies) originate, in a simplified view, from density perturbations of a
given length scale R that is able to collapse gravitationally over the course of cosmic
time. Such a density perturbation can be described by course-graining the density field
ρ on the scale R, typically by performing a convolution with a spherical top-hat filter.

The variance of the coarse-grained density field associated with a scale R at redshift z
is then

(1.51) σ2(M, a) =
1

2π2

� ∞

0

dk k2 P (k, a) �W 2

TH
(k,M),

25
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Tidal Torques4 B.M. Schäfer

should be emphasised that in this picture the angular momentum
does not originate from the vorticity ω which is amplified by the
nonlinear term rot(υ × ω) in the Euler-equation as explained in
Sect. 2.3, but is rather generated from (vorticity-free) shear flows,
in which protogalactic objects are embedded. During the shearing,
each protohalo is deformed and acquires a rotational motion com-
ponent. Eventually it decouples from the shear flow by collaps-
ing under its own gravity, which reduces the length of the lever
arms and makes torquing inefficient. For the perturbative descrip-
tion of the deformation of the object by the action of shear flows,
Lagrangian perturbation theory is suitable. The difficulty in this ap-
proach lies in the fact that the shear flows themselves influence the
boundary surface of the embedded object and hence its total mass
and inertia. Tidal torquing effectively solves the problem of gen-
erating vorticity from a laminar flow by introducing a non-simply
connected density and velocity fields, because during spherical col-
lapse the protohalo volume is separated from the ambient fields.

This mechanism was first quantitatively investigated by
Doroshkevich (1970), White (1984) and Wesson (1985), building
on the original idea by Hoyle (1949) and Sciama (1955). Assum-
ing a non-spherical shape of the protogalactic region, the angular
momentum grows at first order and linearly in time in Einstein-
de Sitter universes, whereas in spherical regions, the acquisition of
angular momentum is only a second order effect due to convec-
tive matter streams on the boundary surface, as shown by Peebles
(1969).

3.2 Acquisition of angular momentum by tidal torquing

Quite generally, the angular momentum L of a rotating mass distri-
bution ρ(r, t) contained in the physical volume V is given by:

L(t) =
∫

V
d3r (r − r̄) × υ(r, t)ρ(r, t), (23)

where υ(r, t) is the (rotational) velocity of the fluid element with
density ρ(r, t) = 〈ρ〉(1 + δ(r, t)) at position r around the centre of
gravity r̄. In perturbation theory, δ% 1, and the density field can be
approximated by assuming a constant density 〈ρ〉 = Ωmρcrit inside
the protogalactic region. White (1984), Catelan & Theuns (1996a),
Theuns & Catelan (1997) and Crittenden et al. (2001) have de-
scribed the growth of perturbations on an expanding background
in Lagrangian perturbation theory: The trajectory of dark mat-
ter particles in comoving coordinates to first order is given by
the Zel’dovich approximation as the dynamical model (Zel’dovich
1970):

x(q, t) = q − D+(t)∇Ψ(q)→ ẋ = −Ḋ+∇Ψ, (24)

which relates the initial particle positions q to the positions x at
time t. The particle velocity ẋ follows from the Zel’dovich-relation
by differentiation by the time-variable. The growth function D+(t)
describes the homogeneous time evolution of the displacement field
Ψ and contains the influence of the particular dark energy model.
In the Lagrangian frame, the expression for the angular momentum
becomes

L = ρ0a5
∫

VL
d3q (x − x̄) × ẋ ( ρ0a5

∫

VL
d3q (q − q̄) × ẋ, (25)

where the integration volume is defined in comoving coordinates
as well. Assuming that the gradient ∇Ψ(q) of the displacement
field Ψ(q) does not vary much across the Lagrangian volume VL,
a second-order Taylor expansion in the vicinity of the centre of
gravity q̄ is applicable:

Lagrange frameEuler frame

Figure 1. Principle of tidal torquing: A linear variation of the displacements
across the protogalactic object in the space-fixed Euler-frame translates to
a rotational motion in the comoving Lagrange-frame after collapse.

∂αΨ(q) ( ∂αΨ(q̄) +
∑

β

(q − q̄)βΨαβ, (26)

The expansion coefficient is the tidal shear Ψσγ at the point q̄:

Ψσγ(q̄) = ∂σ∂γΨ(q̄), (27)

because the Zel’dovich displacement field Ψ is related to gravita-
tional potential Φ and can be computed as the solution to Poisson’s
equation ∆Ψ = δ from the cosmological density field δ. The gradi-
ent ∂αΨ(q̄) of the Zel’dovich potential displaces the protogalactic
object, which is neglected in the further derivation, as I only trace
differential advection velocities responsible for inducing rotation.
Identifying the tensor of second moments of the mass distribution
of the protogalactic object as the inertia Iβσ,

Iβσ = ρ0a3
∫

VL
d3q (q − q̄)β(q − q̄)σ (28)

one obtains the final expression of the angular momentum Lα:

Lα = a2Ḋ+εαβγ
∑

σ

IβσΨσγ. (29)

Here, eqn. (29) implicitly assumes a peak constraint because the
inertia of the protogalactic volume is needed, which can only be
defined in a sensible way for a density peak from which a halo
forms by collapse.

Fig. 1 illustrates the torquing action on a protogalactic region
in the Euler- and Lagrange frames: If the Zel’dovich displacements
∇Ψ vary linearly across the protogalactic cloud, they introduce a
rotational motion in the comoving Lagrangian frame. Being pro-
portional to the second derivative of the potential Ψ, the rotation
is determined by the tidal forces Ψσγ = ∂σ∂γΨ. Tidal torquing is
effective until the moment of turn-around in the spherical collapse
picture, because the collapse dramatically reduces the lever arms.
After the collapse, the halo conserves the angular momentum it has
accumulated until turn-around.

Porciani et al. (2002a) give an intuitive argument on the ori-
entation of the angular momentum relative to the principal axis
system of the tidal shear, which is a very useful relation: In the
eigenframe of the tidal shear, the components of the angular mo-
mentum are simply given by Lα ∝ Iβγ(Ψβ − Ψγ), where the indices
are cyclic permutations of (1, 2, 3). Ψα with a single index are the
three eigenvalues of Ψ. Averaging over all orthogonal transforma-
tions relating the eigensystems of I and Ψ yields the result that the
largest component of L would be the one for which

∣

∣

∣Ψβ −Ψγ
∣

∣

∣ is
largest. Because of the ordering Ψ1 ! Ψ2 ! Ψ3, this is necessar-
ily L2, L2 ∝ |Ψ3 −Ψ1|, i.e. the angular momentum tends to align
itself parallel to Ψ2, i.e. the axes corresponding to the intermediate

Linear variation
of displacements 

in real space...

...generates
angular momentum
in comoving space
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True for haloes: AM from misalignment...

Lee, OH, Porciani, 2009

At all halo masses:

haloes with largest initial 
misalignment

acquire highest specific AM 

Alignment angle:
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and thus yields the main result of tidal torque theory

(1.48) J = a2Ḋ+(t)�ijkIjlTlk +O(q3),

where

(1.49) Iij ≡ ρ0a
3

0

�

VL

d3q (qi − �qi�) (qj − �qj�)

is the moment of inertia tensor, and Tij ≡ −∂2Φ/∂qi∂qj is the deformation tensor
Hence, at first order, spin angular momentum is generated from the misalignment of
the moment of inertia tensor of the proto-galaxy and the tidal tensor evaluated in
Lagrangian space. In a matter-dominated universe, D+ ∝ a ∝ t2/3, so that angular
momentum grows as �J� ∝ t.

Figure 1.3 shows the misalignment angle between the Lagrangian moment of inertia
tensor and the tidal field tensor

(1.50) β ≡ 1−
�
I2

12
+ I2

23
+ I2

31

I2

11
+ I2

22
+ I2

33

�1/2

,

where Iij are the components of the moment of inertia tensor Iij in the principal axis
frame of T , as a function of the specific angular momentum of the z = 0 halo for four
different mass bins, as obtained from cosmological N-body simulations (for details of
the simulations see Section 3.2). An angle of β = 1 corresponds to perfect alignment.
Clearly, haloes with a larger misalignment between the two tensors acquire higher
specific angular momentum.

Angular momentum grows until the perturbation undergoes turnaround, where the
lever arm is maximal and angular momentum generation is most efficient.

The emergence of the tidal tensor in the generation of angular momentum for dark
haloes and galaxies could survive in a correlation between spin amplitude and
orientation and the environment in which galaxies formed since the gravitational
contribution is long-ranged. The emergence of such a correlation is difficult, if not
impossible, to describe analytically so that it is best investigated using numerical
simulations of structure formation. For these reasons, using simulations, in Chapter
4, we investigate the correlation of spin amplitude and direction with the large-scale
environment for dark matter haloes.

1.11. The Abundance of Collapsed Objects

Cosmic inflation predicts that the primordial density field is a Gaussian random field
(see also Section 1.3). Thus, it is fully characterised by its variance σ. Dark matter
haloes (and galaxies) originate, in a simplified view, from density perturbations of a
given length scale R that is able to collapse gravitationally over the course of cosmic
time. Such a density perturbation can be described by course-graining the density field
ρ on the scale R, typically by performing a convolution with a spherical top-hat filter.

The variance of the coarse-grained density field associated with a scale R at redshift z
is then

(1.51) σ2(M, a) =
1

2π2

� ∞

0

dk k2 P (k, a) �W 2

TH
(k,M),

25

Iij in Tij principal axis frame.

see also Porciani, Dekel & Hoffman (2001)



And what about orientations?
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Figure 6.4 — Distribution of angles between the total (dark matter plus baryonic)

angular momentum vectors of the dark matter host halo and the stellar, gas and dark

matter component of the central galaxy. The angle distributions are shown for the

entire sample of well-resolved central galaxies at z = 0 (top panel), z = 0.5 (bottom

left panel) and z = 1 (bottom right panel). Galaxies in the low-mass (LM) sample are

shown in blue, galaxies in the medium-mass (MM) sample in green and those in the

high-mass (HM) sample in red.

where �ijk is the Levi-Civita symbol. In the eigenspace of the tidal tensor, the

components of J become

J1 ∝ (λ2 − λ3)I23,

J2 ∝ (λ3 − λ1)I31,(6.4)

J3 ∝ (λ1 − λ2)I12.

Since, by definition, λ3 − λ1 is the largest coefficient, linear tidal torque theory thus

predicts that, at first order, J is preferentially aligned with v2 in a statistical sample of

haloes/galaxies where contributions from the moment of inertia tensor average out.
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and thus yields the main result of tidal torque theory

(1.48) J = a2Ḋ+(t)�ijkIjlTlk +O(q3),

where

(1.49) Iij ≡ ρ0a
3

0

�

VL

d3q (qi − �qi�) (qj − �qj�)

is the moment of inertia tensor, and Tij ≡ −∂2Φ/∂qi∂qj is the deformation tensor
Hence, at first order, spin angular momentum is generated from the misalignment of
the moment of inertia tensor of the proto-galaxy and the tidal tensor evaluated in
Lagrangian space. In a matter-dominated universe, D+ ∝ a ∝ t2/3, so that angular
momentum grows as �J� ∝ t.

Figure 1.3 shows the misalignment angle between the Lagrangian moment of inertia
tensor and the tidal field tensor

(1.50) β ≡ 1−
�
I2

12
+ I2

23
+ I2

31

I2

11
+ I2

22
+ I2

33

�1/2

,

where Iij are the components of the moment of inertia tensor Iij in the principal axis
frame of T , as a function of the specific angular momentum of the z = 0 halo for four
different mass bins, as obtained from cosmological N-body simulations (for details of
the simulations see Section 3.2). An angle of β = 1 corresponds to perfect alignment.
Clearly, haloes with a larger misalignment between the two tensors acquire higher
specific angular momentum.

Angular momentum grows until the perturbation undergoes turnaround, where the
lever arm is maximal and angular momentum generation is most efficient.

The emergence of the tidal tensor in the generation of angular momentum for dark
haloes and galaxies could survive in a correlation between spin amplitude and
orientation and the environment in which galaxies formed since the gravitational
contribution is long-ranged. The emergence of such a correlation is difficult, if not
impossible, to describe analytically so that it is best investigated using numerical
simulations of structure formation. For these reasons, using simulations, in Chapter
4, we investigate the correlation of spin amplitude and direction with the large-scale
environment for dark matter haloes.

1.11. The Abundance of Collapsed Objects

Cosmic inflation predicts that the primordial density field is a Gaussian random field
(see also Section 1.3). Thus, it is fully characterised by its variance σ. Dark matter
haloes (and galaxies) originate, in a simplified view, from density perturbations of a
given length scale R that is able to collapse gravitationally over the course of cosmic
time. Such a density perturbation can be described by course-graining the density field
ρ on the scale R, typically by performing a convolution with a spherical top-hat filter.

The variance of the coarse-grained density field associated with a scale R at redshift z
is then

(1.51) σ2(M, a) =
1

2π2

� ∞

0

dk k2 P (k, a) �W 2

TH
(k,M),

25

Tidal torque theory result:

In principal axis frame of the Tidal Tensor:

Define (w.l.o.g.) axes v1, v2, v3 of Tij so that λ1 < λ2 < λ3 then:

J2 should be largest, i.e. alignment between v2 and J strongest

(in statistical sample, assuming T and I uncorrelated)

Navarro et al. (2004) find TTT confirmed for isolated galaxies
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Figure 9. Median alignment angles between the halo angular
momentum vectors and the eigenvectors pointing in the direction
of filaments and normal to the sheets, respectively. Different red-
shifts are indicated with the three colours. Errorbars indicate the
error in the median. The dotted line indicates the expectation
value for a random signal.

To further explore possible connections between the
alignment of the large-scale structure and the intrinsic align-
ment of haloes in the different environments, we search for
a correlation signal between the LSS and the axis vectors of
the moment of inertia ellipsoid of the haloes. In particular,
we use the major axis vector l1 to define the alignment an-
gle cos θ = l̂1 · v̂, where v is again the eigenvector normal
to a sheet or parallel to a filament. The resulting median
correlation is shown in Figure 10. We find no alignment for
halo masses M < 0.1M∗; however, in both the filaments
and the sheets, the halo major axis appears to be strongly
aligned with the LSS for masses above about a tenth of M∗.
The strength of the alignment grows with increasing mass.
This is possibly to be expected, especially for the most mas-
sive haloes, since their shape might influence the potential
from which the eigenvectors are derived. Adopting a fixed
smoothing scale Ms results merely in a shift of the relations
shown in Figure 10.

Results similar to ours concerning the alignments of
shapes and spins with the LSS, and the transition of align-
ment orientation at M∗ in the filaments, are reported by
Aragón-Calvo et al. (2007) for z = 0 haloes using a defini-
tion of environment that is based on density rather than,
as in our case, on the gravitational potential, as well as for
haloes in the vicinity of clusters by Basilakos et al. (2006)
using the moment of inertia ellipsoid of superclusters and
by Ragone-Figueroa & Plionis (2007) defining environment
by the distance to the nearest cluster. It is clear from our
present analysis that such alignments are in place at red-
shifts of order one, and are maintained virtually unchanged

performed with Ms/M∗ = const., the filament direction is ob-
tained on increasingly smaller comoving scales at higher redshifts.
This partially erases the stronger correlation that is observed for
the most massive haloes when the smoothing is kept at constant
comoving scale for all redshifts.

Figure 10. Median alignment angles between the halo major
axis vectors and the eigenvectors pointing in the direction of fil-
aments and normal to the sheets, respectively. Different redshifts
are indicated with the three colours. Errorbars indicate the error
in the median. The dotted line indicates the expectation value
for a random signal. Data is shown for the ratio of the smoothing
scale Ms/M∗ fixed.

over the last eight or more billion years of evolution of struc-
ture in the universe.

3.5.2 Halo-Halo alignments

We finally compute the spin-spin and spin-orbit correlation
functions using the definitions of Porciani et al. (2002) and
Bailin & Steinmetz (2005). While we show the results for the
Ms/M∗ = const. smoothing case, we stress that qualitatively
the results remain unchanged when the constant smoothing
is adopted.

For the spin-spin correlation we have:

ξJ·J(r) = 〈 |Ĵ(x) · Ĵ(x + r)| 〉, (12)

where J is the intrinsic angular momentum of each halo,
and the average is taken over all pairs of haloes which are
separated by a distance r and reside in the same environment
class. Similarly, the spin-orbit correlation is defined as:

ξJ·L(r) = 〈Ĵ(x) · L̂(x + r)〉, (13)

where L is the relative orbital angular momentum between
two haloes separated by a distance r.

Figure 11 shows the spin-spin alignment for haloes in
clusters and filaments at the three redshifts of our study; up-
per and lower panels show respectively the results for haloes
with masses below and above M∗. The shaded region shows
the 1σ-confidence area for the total sample, split by mass
but not split by environment. The correlations within either
of the environmental classes is never stronger than those
for the total sample and all of them are consistent with no
signal within 2σ. Furthermore, we find no evidence for any
significant redshift evolution of these correlations.

The spin-orbit correlation function is shown in Figure
12. The strong correlation that we found at z = 0 in Paper I,
extending out to several Mpc, is present also out to redshift
z = 1 with no significant changes.

c© 2007 RAS, MNRAS 000, 1–12
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Figure 9. Median alignment angles between the halo angular
momentum vectors and the eigenvectors pointing in the direction
of filaments and normal to the sheets, respectively. Different red-
shifts are indicated with the three colours. Errorbars indicate the
error in the median. The dotted line indicates the expectation
value for a random signal.

To further explore possible connections between the
alignment of the large-scale structure and the intrinsic align-
ment of haloes in the different environments, we search for
a correlation signal between the LSS and the axis vectors of
the moment of inertia ellipsoid of the haloes. In particular,
we use the major axis vector l1 to define the alignment an-
gle cos θ = l̂1 · v̂, where v is again the eigenvector normal
to a sheet or parallel to a filament. The resulting median
correlation is shown in Figure 10. We find no alignment for
halo masses M < 0.1M∗; however, in both the filaments
and the sheets, the halo major axis appears to be strongly
aligned with the LSS for masses above about a tenth of M∗.
The strength of the alignment grows with increasing mass.
This is possibly to be expected, especially for the most mas-
sive haloes, since their shape might influence the potential
from which the eigenvectors are derived. Adopting a fixed
smoothing scale Ms results merely in a shift of the relations
shown in Figure 10.

Results similar to ours concerning the alignments of
shapes and spins with the LSS, and the transition of align-
ment orientation at M∗ in the filaments, are reported by
Aragón-Calvo et al. (2007) for z = 0 haloes using a defini-
tion of environment that is based on density rather than,
as in our case, on the gravitational potential, as well as for
haloes in the vicinity of clusters by Basilakos et al. (2006)
using the moment of inertia ellipsoid of superclusters and
by Ragone-Figueroa & Plionis (2007) defining environment
by the distance to the nearest cluster. It is clear from our
present analysis that such alignments are in place at red-
shifts of order one, and are maintained virtually unchanged

performed with Ms/M∗ = const., the filament direction is ob-
tained on increasingly smaller comoving scales at higher redshifts.
This partially erases the stronger correlation that is observed for
the most massive haloes when the smoothing is kept at constant
comoving scale for all redshifts.

Figure 10. Median alignment angles between the halo major
axis vectors and the eigenvectors pointing in the direction of fil-
aments and normal to the sheets, respectively. Different redshifts
are indicated with the three colours. Errorbars indicate the error
in the median. The dotted line indicates the expectation value
for a random signal. Data is shown for the ratio of the smoothing
scale Ms/M∗ fixed.

over the last eight or more billion years of evolution of struc-
ture in the universe.

3.5.2 Halo-Halo alignments

We finally compute the spin-spin and spin-orbit correlation
functions using the definitions of Porciani et al. (2002) and
Bailin & Steinmetz (2005). While we show the results for the
Ms/M∗ = const. smoothing case, we stress that qualitatively
the results remain unchanged when the constant smoothing
is adopted.

For the spin-spin correlation we have:

ξJ·J(r) = 〈 |Ĵ(x) · Ĵ(x + r)| 〉, (12)

where J is the intrinsic angular momentum of each halo,
and the average is taken over all pairs of haloes which are
separated by a distance r and reside in the same environment
class. Similarly, the spin-orbit correlation is defined as:

ξJ·L(r) = 〈Ĵ(x) · L̂(x + r)〉, (13)

where L is the relative orbital angular momentum between
two haloes separated by a distance r.

Figure 11 shows the spin-spin alignment for haloes in
clusters and filaments at the three redshifts of our study; up-
per and lower panels show respectively the results for haloes
with masses below and above M∗. The shaded region shows
the 1σ-confidence area for the total sample, split by mass
but not split by environment. The correlations within either
of the environmental classes is never stronger than those
for the total sample and all of them are consistent with no
signal within 2σ. Furthermore, we find no evidence for any
significant redshift evolution of these correlations.

The spin-orbit correlation function is shown in Figure
12. The strong correlation that we found at z = 0 in Paper I,
extending out to several Mpc, is present also out to redshift
z = 1 with no significant changes.
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Adding Baryons: Simulation Set-up

RAMSES AMR zoom simulation
high-res of a single filament ~25Mpc/h in 100Mpc/h box
0.38 h-1kpc physical resolution down to z=0
cooling to 104K, metal enrichment, star formation & supernova feedback



Going from halos to galaxies?
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Figure 15. Angle between the cumulative specific angular momentum vec-
tors of dark matter in the DMG simulation and their counterparts in the
DMO simulation. (A value of cos θ = 1 means that the dark matter mass
within that radius in the DMG halo is aligned with that in the DMO sim-
ulation.) Each halo pair is colour coded according to the mean of the two
halo masses, and the median trend with error bars is marked with the heavy
black line.

skind et al. 2007), the galaxy angular momentum is a very accurate
proxy for the orientation of the galaxy itself (i.e. the minor axis of
its mass distribution)6. Therefore, in this section, we shall use the
angular momentum of the stellar component of the galaxies (jgal),
in addition to the minor axis of the stellar mass distribution (cgal),
to define their orientation.

Fig. 16 shows the median radial profile of the orientation of
the galaxies in the DMG simulation with respect to the angular
momentum vector of the dark matter of either their parent halo in
DMG, or of the corresponding halo in DMO. The scatter in the an-
gles is very large and so we do not show the usual percentile boxes
and bars; instead the error bars give the uncertainty in the median.
Only a rather weak trend with radius is apparent: the median val-
ues increase from 25◦ at≈ 0.25Rvir to 35◦ at the virial radius, but
given the large scatter, this is of very low significance.

We examine the angular momentum alignment distributions
themselves in Figs. 17 and 18. These show histograms of the co-
sine of the angle between jgal and the dark matter jtot and jinner
respectively. There is a clear concentration towards small angles,
particularly for the inner halo, but both distributions have a long tail
towards large angles. Furthermore, the distributions are very similar
for the DMG and DMO haloes. This relatively weak galaxy–halo
alignment serves to wash out the subtle changes in the relative ori-
entations of the dark matter from the DMO and DMG simulations
seen in the previous section.

Fig. 19 shows the histogram of the angle between the full halo

6 We find the median cosine of the angle between the minor axis
and angular momentum axis of the stellar components of a galaxy is
0.9949+0.00047

−0.00443 . (This uses the 81 galaxies with ! 1000 stellar particles,
and stellar shape axis ratios of s = c/a " 0.81, in haloes with Q " 0.5
and at least 1000 dark matter particles.)

Figure 16. Orientation profiles of the galaxies in the DMG haloes with re-
spect to the cumulative dark matter angular momentum vector of the DMG
parent haloes (red), and the corresponding DMO haloes (blue). Only the
median profiles are plotted. Note that the error bars are the uncertainties on
the median (Eqn. 9), not the spread of the data, which is much larger.

Figure 17. Distribution of the angle between the specific angular momen-
tum vector of the galaxies in DMG haloes and the specific angular mo-
mentum of the total dark matter of the DMG halo itself (red) or the corre-
sponding DMO halo (blue). The medians of the distribution are marked (at
arbitrary heights) with error bars given by Eqn. 9.

minor axis, ctot, and the galactic spin axis. In this case, the scatter
between the orientation of the halo angular momentum and its mass
distribution (Fig. 6 and B07) tends to wash out most of the (already
weak) alignment between galaxy and halo. Finally, we consider the
galaxy–halo misalignment purely in terms of the shape of the sys-
tem: we plot the distribution of the angle between the halo minor
axis and the galactic stellar minor axis in Fig. 20. (Although we

8 O. Hahn et al.
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Figure 6. Distribution of angles between the total (dark matter plus baryonic) angular momentum vectors of the dark matter host
halo and the stellar, gas and dark matter component of the central galaxy. The angle distributions are shown for the entire sample of
well-resolved central galaxies at z = 0 (left), z = 0.5 (centre) and z = 1 (right panel).

where c is a normalisation parameter.

4.2 The Distribution of Spin and Tidal Field

Eigenvectors

4.2.1 Anisotropy of the Tidal Field

In Figure 7, we show the spatial distribution at z = 0.5
of tidal field eigenvectors v1...3 for the comoving smoothing
scales Rs = 1, 2 and 5 h−1Mpc in Mollweide projection. The
tidal field is evaluated at the positions of the galaxies that
are included in any of the samples (LM or HM). As this is an
equal-area projection, local concentrations directly translate
into an increased anisotropy for that direction. Since the
tidal field is a tensor field, each vector has spin-2 symmetry
and hence is represented by two points, the second being a
reflection of the first at the origin. While the tidal field is
already highly anisotropic on scales of 1 h−1Mpc, on scales of
5h−1Mpc virtually only the main filament remains so that
the distribution of eigenvectors becomes almost dipolar.

4.2.2 Anisotropy of the Galaxy Spin Distribution

Figure 8 shows the distribution of stellar angular momentum
vectors at redshifts z = 1, 0.5 and 0 in Mollweide projection.
At all redshifts the distributions are clearly anisotropic. The
origin and detailed form of this anisotropic distribution is
determined by both physical and numerical effects. We will
discuss their interaction in what follows.

At z = 1, the distribution is anisotropic with no clear
clustering of spin vectors around the Cartesian grid vectors.
This provides strong evidence that the high-redshift spin
distribution is anisotropic due to physical processes. Com-
paring with Figure 6, the tidal field on scales < 5h−1Mpc
is anisotropic at a similar level. We will discuss their cross-
correlation in the next section.

At z = 0.5 there is a slight tendency for the spins
to cluster around the grid vectors that is more obvious at
z = 0 for the low-mass galaxies. Since a multi-grid Poisson
solver (such as the one used in Ramses) introduces pre-
ferred directions along the Cartesian grid basis vectors, a
non-physical anisotropy of the gravitational inter-particle
force is expected close to the resolution limit (cf. Hockney &

Eastwood 1981) arising from an unavoidable lack of symme-
try in the discrete Laplacian operator. These errors are sys-
tematic in any asymmetric system (cf. May & James 1984).
This is clearly a systematic effect in our numerical results,
and we need to estimate its magnitude.

Remarkably, the grid-aligned galaxies at low redshift
are not distributed isotropically among all Cartesian grid
vectors. In larger scale simulations of entire cosmological
volumes (i.e. not restricted to a filamentary region – as e.g.
in the “Mare Nostrum” simulation, Ocvirk et al. 2008), we
do not see this effect. In these larger volume simulations at
lower spatial resolution, grid-alignment is also observed but
with galaxies aligned with all three grid vectors.

Given the highly anisotropic distribution of tidal field
eigenvectors (see previous subsection), it is however clear
how such an anisotropy can arise. Assuming that the galax-
ies’ orientations are determined by some anisotropic physi-
cal effect (such as tides), the disks’ initial angular momen-
tum will be anisotropic (as it is at z = 1). Given the ad-
ditional numerical anisotropy, the disks will subsequently
relax slowly to the closest potential minimum, i.e. the clos-
est Cartesian grid vector, in the absence of any perturba-
tion that is larger than the numerical error (and thus pre-
dominantly in low density regions). This will happen on a
timescale that is connected to the anisotropy of the error
in the multi-grid Poisson solver. Support for this interpre-
tation of the numerical results comes from a look at the
galaxies’ spin distribution at high redshift where no obvious
grid-alignment is observed. Looking at the left panel of Fig-
ure 8, we see a non-isotropic distribution with no spins in
the vicinity of those grid axes where by z = 0 also no grid-
aligned galaxies are seen (e.g. the one in the very centre of
the Mollweide maps).

We will continue to discuss the impact of such a spu-
rious alignment on our results in Section A. To conclude
this section, we can however clearly say that the distribu-
tion of galaxy angular momenta is anisotropic due to galaxy
formation physics. The anisotropy is then likely amplified
by numerical effects at low redshifts, but numerical effects
alone will never generate an anisotropic distribution.

c© 2010 RAS, MNRAS 000, 1–17
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Galaxy-LSS alignments

~100 well-resolved galaxies.
shown are synthetic stellar light images, i’,r’,g’ bands with dust
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The tidal field seen by the galaxies...
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Figure 7. Mollweide sphere projections of the three eigenvalues of the tidal field at the positions of the galaxies for three smoothing
scales, 1 h−1Mpc (top), 2 h−1Mpc (middle) and 5 h−1Mpc (bottom). All data is for redshift z = 0.5. Since the tidal field has a spin-2
symmetry, each vector is represented by two points. The Mollweide projection is an area preserving projection.
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Figure 8. The orientations of galaxy stellar angular momenta at redshifts z = 1 (left), z = 0.5 (middle) and z = 0 (right). The angular
momentum vectors are shown in the Mollweide projection. The circled crosses indicate the Cartesian basis vectors of the AMR grid.

4.3 Correlations with the tidal field

As outlined in Section 4.1, linear tidal torque theory indi-
cates that galaxies might show a preferential alignment with
the intermediate principal axis of the tidal field. In this Sec-
tion, we investigate whether such an alignment persists also
at times after the turnaround of the proto-galaxy in our
simulation. Unfortunately, the scale on which the tidal field
should be computed is not known a priori so that we present
the degree of alignment for a range of smoothing scales.
Since these scales are likely to be different for galaxies of
different masses, and galaxies of different halo masses may
also experiences differences in the details of their formation,
all results are split into different halo masses as described in
Section sec:galsamples. In addition, we distinguish low-mass
galaxies in high-density and in low-density environments.

In Figure 9, we show the scale dependence of the cosine
of the angles | cos θi| between the angular momentum vec-
tors of the galaxies and the tidal field eigenvectors vi for the
inner dark matter, gas and stellar components. The panels
represent the alignments with the 3 eigenvectors (vertical)
for the 2 mass bins (horizontal). We additionally split the
low mass bin (LM) into an overdense bin δ > δ50 and an un-
derdense bin δ < δ50, where here δ is the matter overdensity
field smoothed on a 2 h−1Mpc physical scale and δ50 is the

median overdensity for the galaxies in the respective mass
bin. The values of δ50 for our sample of galaxies turn out to
be: 0.27 at z = 1, 0.54 at z = 0.5 and 1.16 at z = 0.

Using a two-tailed Kolmogorov-Smirnov test, we as-
sess the inconsistency of the angle distributions on a scale
of physical 2 h−1Mpc with a flat (i.e. random distribution)
prand(| cos θi|) = 1. The significance levels are given in units
of σ in Table 3.

At z = 1, we find the strongest alignment for the
low-mass low-density sample, where on scales of physical
2h−1Mpc, the alignment signal with the intermediate prin-
cipal axes of the tidal field peaks at a median angle of
| cos θ2| ∼ 0.7 for the stellar angular momentum component.
The deviation from a random angle distribution is significant
at 2.75σ. The alignment of the gas disk is slightly weaker,
while that of the inner dark matter is slightly stronger. There
is a weaker counter-alignment with the third principal axis
on these scales, while the alignment with the first axis is
consistent with random.

For the low-mass high-density sample, we find a sig-
nificant alignment only with the first principal axis for the
stellar and gas component, while the dark matter angular
momentum is consistent with random at almost all scales.

Finally, for the high-mass sample, we find a significant
alignment of the stellar and gas component with the third

c© 2010 RAS, MNRAS 000, 1–17
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Figure 7. Mollweide sphere projections of the three eigenvalues of the tidal field at the positions of the galaxies for three smoothing
scales, 1 h−1Mpc (top), 2 h−1Mpc (middle) and 5 h−1Mpc (bottom). All data is for redshift z = 0.5. Since the tidal field has a spin-2
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Figure 8. The orientations of galaxy stellar angular momenta at redshifts z = 1 (left), z = 0.5 (middle) and z = 0 (right). The angular
momentum vectors are shown in the Mollweide projection. The circled crosses indicate the Cartesian basis vectors of the AMR grid.

4.3 Correlations with the tidal field

As outlined in Section 4.1, linear tidal torque theory indi-
cates that galaxies might show a preferential alignment with
the intermediate principal axis of the tidal field. In this Sec-
tion, we investigate whether such an alignment persists also
at times after the turnaround of the proto-galaxy in our
simulation. Unfortunately, the scale on which the tidal field
should be computed is not known a priori so that we present
the degree of alignment for a range of smoothing scales.
Since these scales are likely to be different for galaxies of
different masses, and galaxies of different halo masses may
also experiences differences in the details of their formation,
all results are split into different halo masses as described in
Section sec:galsamples. In addition, we distinguish low-mass
galaxies in high-density and in low-density environments.

In Figure 9, we show the scale dependence of the cosine
of the angles | cos θi| between the angular momentum vec-
tors of the galaxies and the tidal field eigenvectors vi for the
inner dark matter, gas and stellar components. The panels
represent the alignments with the 3 eigenvectors (vertical)
for the 2 mass bins (horizontal). We additionally split the
low mass bin (LM) into an overdense bin δ > δ50 and an un-
derdense bin δ < δ50, where here δ is the matter overdensity
field smoothed on a 2 h−1Mpc physical scale and δ50 is the

median overdensity for the galaxies in the respective mass
bin. The values of δ50 for our sample of galaxies turn out to
be: 0.27 at z = 1, 0.54 at z = 0.5 and 1.16 at z = 0.

Using a two-tailed Kolmogorov-Smirnov test, we as-
sess the inconsistency of the angle distributions on a scale
of physical 2 h−1Mpc with a flat (i.e. random distribution)
prand(| cos θi|) = 1. The significance levels are given in units
of σ in Table 3.

At z = 1, we find the strongest alignment for the
low-mass low-density sample, where on scales of physical
2h−1Mpc, the alignment signal with the intermediate prin-
cipal axes of the tidal field peaks at a median angle of
| cos θ2| ∼ 0.7 for the stellar angular momentum component.
The deviation from a random angle distribution is significant
at 2.75σ. The alignment of the gas disk is slightly weaker,
while that of the inner dark matter is slightly stronger. There
is a weaker counter-alignment with the third principal axis
on these scales, while the alignment with the first axis is
consistent with random.

For the low-mass high-density sample, we find a sig-
nificant alignment only with the first principal axis for the
stellar and gas component, while the dark matter angular
momentum is consistent with random at almost all scales.

Finally, for the high-mass sample, we find a significant
alignment of the stellar and gas component with the third
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Figure 11. Same as Figure 9 but at redshift z = 0.

their dark matter halo with respect to the total angular mo-
mentum of the host halo; and (2) the orientations of their
angular momentum with the surrounding large-scale struc-
ture by computing scale-dependent alignments with the tidal
field eigenvectors.

The simulation provides us with a sample of ∼ 100
disk galaxies at 380 h−1pc resolution down to z = 0, span-
ning halo masses between 1011 and 1013 h−1M" and stellar
masses between 7.5×109 and 8×1011 h−1M". We focus this
first analysis on the three simulation snapshots at redshifts
0, 0.5 and 1. We split our sample of galaxies into low-mass
galaxies, which are those with a halo mass below the cold
accretion limit of ∼ 4×1011 h−1M", and high-mass galaxies
above this limit. At z = 0, we consider an additional medium
mass bin bridging the gap between the cold accretion limit
and the non-linear mass scale of ∼ 2 × 1012 h−1M". Our
main results are summarised as follows:

• There is an almost perfect alignment at a median of
∼ 18 degrees of the stellar, gaseous and inner dark mat-
ter angular momenta at low redshifts. At z = 1, there is a
slightly weaker alignment at ∼ 36 degrees of the stellar and
gaseous spins with the dark matter spin, likely due to the
higher fraction of unrelaxed galaxies at that epoch. We do
not find any dependence of this alignment signal either on
environmental density, or halo mass or stellar mass.

• The distribution of angles between the spin of the cen-
tral galaxy and the entire host halo is significantly broader,
the corresponding median angles larger. We find a median
angle of ∼ 50 degrees between both the stellar and the gas
disk and the total halo angular momentum at z = 0. This
median angle decreases slightly at higher redshifts to a me-
dian of ∼ 46 degrees at z = 1. The spin of the inner dark
matter halo is slightly stronger aligned with the total halo.
We find a median of ∼ 45 degrees at z = 0 and ∼ 34 degrees
at z = 1. Again, there is no dependence of this alignment
signal on either stellar or halo mass, or on environmental
density.

• Low-mass galaxies in low density regions are aligned
with the intermediate axis of the large-scale tidal field ten-
sor, peaking on scales of physical 2 h−1Mpc (i.e. 4 h−1Mpc
comoving) at z = 1 with very high significance. Such an
alignment is consistent with the predictions from linear tidal
torque theory.

• In density regions above the median overdensity, on
scales of physical 2 h−1Mpc, we find however no evidence
for alignment of the low-mass galaxies with the intermedi-
ate principal axis of the tidal field – at any redshift since
z = 1. Instead, we find alignment with the first principal
axis at z = 1, which disappears at later epochs.

• We find a strong and significant correlation between
environmental density and the degree of alignment with the
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4.3 Correlations with the tidal field

As outlined in Section 4.1, linear tidal torque theory indi-
cates that galaxies might show a preferential alignment with
the intermediate principal axis of the tidal field. In this Sec-
tion, we investigate whether such an alignment persists also
at times after the turnaround of the proto-galaxy in our
simulation. Unfortunately, the scale on which the tidal field
should be computed is not known a priori so that we present
the degree of alignment for a range of smoothing scales.
Since these scales are likely to be different for galaxies of
different masses, and galaxies of different halo masses may
also experiences differences in the details of their formation,
all results are split into different halo masses as described in
Section sec:galsamples. In addition, we distinguish low-mass
galaxies in high-density and in low-density environments.

In Figure 9, we show the scale dependence of the cosine
of the angles | cos θi| between the angular momentum vec-
tors of the galaxies and the tidal field eigenvectors vi for the
inner dark matter, gas and stellar components. The panels
represent the alignments with the 3 eigenvectors (vertical)
for the 2 mass bins (horizontal). We additionally split the
low mass bin (LM) into an overdense bin δ > δ50 and an un-
derdense bin δ < δ50, where here δ is the matter overdensity
field smoothed on a 2 h−1Mpc physical scale and δ50 is the

median overdensity for the galaxies in the respective mass
bin. The values of δ50 for our sample of galaxies turn out to
be: 0.27 at z = 1, 0.54 at z = 0.5 and 1.16 at z = 0.

Using a two-tailed Kolmogorov-Smirnov test, we as-
sess the inconsistency of the angle distributions on a scale
of physical 2 h−1Mpc with a flat (i.e. random distribution)
prand(| cos θi|) = 1. The significance levels are given in units
of σ in Table 3.

At z = 1, we find the strongest alignment for the
low-mass low-density sample, where on scales of physical
2h−1Mpc, the alignment signal with the intermediate prin-
cipal axes of the tidal field peaks at a median angle of
| cos θ2| ∼ 0.7 for the stellar angular momentum component.
The deviation from a random angle distribution is significant
at 2.75σ. The alignment of the gas disk is slightly weaker,
while that of the inner dark matter is slightly stronger. There
is a weaker counter-alignment with the third principal axis
on these scales, while the alignment with the first axis is
consistent with random.

For the low-mass high-density sample, we find a sig-
nificant alignment only with the first principal axis for the
stellar and gas component, while the dark matter angular
momentum is consistent with random at almost all scales.

Finally, for the high-mass sample, we find a significant
alignment of the stellar and gas component with the third
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Figure 9. Median alignment angles between the halo angular
momentum vectors and the eigenvectors pointing in the direction
of filaments and normal to the sheets, respectively. Different red-
shifts are indicated with the three colours. Errorbars indicate the
error in the median. The dotted line indicates the expectation
value for a random signal.

To further explore possible connections between the
alignment of the large-scale structure and the intrinsic align-
ment of haloes in the different environments, we search for
a correlation signal between the LSS and the axis vectors of
the moment of inertia ellipsoid of the haloes. In particular,
we use the major axis vector l1 to define the alignment an-
gle cos θ = l̂1 · v̂, where v is again the eigenvector normal
to a sheet or parallel to a filament. The resulting median
correlation is shown in Figure 10. We find no alignment for
halo masses M < 0.1M∗; however, in both the filaments
and the sheets, the halo major axis appears to be strongly
aligned with the LSS for masses above about a tenth of M∗.
The strength of the alignment grows with increasing mass.
This is possibly to be expected, especially for the most mas-
sive haloes, since their shape might influence the potential
from which the eigenvectors are derived. Adopting a fixed
smoothing scale Ms results merely in a shift of the relations
shown in Figure 10.

Results similar to ours concerning the alignments of
shapes and spins with the LSS, and the transition of align-
ment orientation at M∗ in the filaments, are reported by
Aragón-Calvo et al. (2007) for z = 0 haloes using a defini-
tion of environment that is based on density rather than,
as in our case, on the gravitational potential, as well as for
haloes in the vicinity of clusters by Basilakos et al. (2006)
using the moment of inertia ellipsoid of superclusters and
by Ragone-Figueroa & Plionis (2007) defining environment
by the distance to the nearest cluster. It is clear from our
present analysis that such alignments are in place at red-
shifts of order one, and are maintained virtually unchanged

performed with Ms/M∗ = const., the filament direction is ob-
tained on increasingly smaller comoving scales at higher redshifts.
This partially erases the stronger correlation that is observed for
the most massive haloes when the smoothing is kept at constant
comoving scale for all redshifts.

Figure 10. Median alignment angles between the halo major
axis vectors and the eigenvectors pointing in the direction of fil-
aments and normal to the sheets, respectively. Different redshifts
are indicated with the three colours. Errorbars indicate the error
in the median. The dotted line indicates the expectation value
for a random signal. Data is shown for the ratio of the smoothing
scale Ms/M∗ fixed.

over the last eight or more billion years of evolution of struc-
ture in the universe.

3.5.2 Halo-Halo alignments

We finally compute the spin-spin and spin-orbit correlation
functions using the definitions of Porciani et al. (2002) and
Bailin & Steinmetz (2005). While we show the results for the
Ms/M∗ = const. smoothing case, we stress that qualitatively
the results remain unchanged when the constant smoothing
is adopted.

For the spin-spin correlation we have:

ξJ·J(r) = 〈 |Ĵ(x) · Ĵ(x + r)| 〉, (12)

where J is the intrinsic angular momentum of each halo,
and the average is taken over all pairs of haloes which are
separated by a distance r and reside in the same environment
class. Similarly, the spin-orbit correlation is defined as:

ξJ·L(r) = 〈Ĵ(x) · L̂(x + r)〉, (13)

where L is the relative orbital angular momentum between
two haloes separated by a distance r.

Figure 11 shows the spin-spin alignment for haloes in
clusters and filaments at the three redshifts of our study; up-
per and lower panels show respectively the results for haloes
with masses below and above M∗. The shaded region shows
the 1σ-confidence area for the total sample, split by mass
but not split by environment. The correlations within either
of the environmental classes is never stronger than those
for the total sample and all of them are consistent with no
signal within 2σ. Furthermore, we find no evidence for any
significant redshift evolution of these correlations.

The spin-orbit correlation function is shown in Figure
12. The strong correlation that we found at z = 0 in Paper I,
extending out to several Mpc, is present also out to redshift
z = 1 with no significant changes.
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Density Dependence of Alignment at z=1
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Investigation of its origin currently in progress:

• Reorientation through mergers? (mergers are more frequent in 
high density regions) - no evidence so far

• Non-linear tides? (tides experienced by galaxies change strongly 
in non-linear density field)

• Baryon physics? (Ram pressure, accretion difference)
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Summary & Conclusion

• Tidal field eigenstructure allows a robust characterization of cosmic 
large-scale structure

• Using the eigenvectors of the smoothed tidal fields we find a mass-
dependent alignment-signal of halo spins and shapes

• We find a mass-, scale- and density dependent alignment of disc 
galaxies. 

• In particular: (1) fossile TTT predicted alignment at low masses in low-
density environments. (2) alignment of the most massive galaxies with 
their surrounding filaments.

• The origin of this scale, mass and density dependence is under 
investigation. Stay tuned...


