High resolution cosmological simulations of z~2 disks

MAX-PLANCK-GESELLSCHAFT

Shy Genel

With: Reinhard Genzel, Thorsten Naab, Amiel Sternberg, Nicolas Bouché

Outline

The observations: context and open questions
The cosmological simulations: model & setup
Clumps survival

Comparisons to observations

The SINS survey

- High-z disks, unlike local spiral galaxies, are:
 - ✓ Clumpy
 - ✓ Gas rich✓ Thick
 - ✓ "turbulent"

Things we'd like to know

- What drives the high velocity dispersion in z~2 disks? Is it 'real' turbulence?
- How long do the clumps survive? Do they migrate inwards to form a bulge?

Things we'd like to know

 What drives the high velocity dispersion in z~2 disks? Is it 'real' turbulence?

 How long do the clumps survive? Do they migrate inwards to form a bulge?

The simulation setup

- Cosmological zoom-in simulations in a 100 Mpc box
- Resolution levels : $M_{gas} = 6e6M_{sun} (200 \text{ pc} @ z=2);$ $M_{gas} = 7e5M_{sun} (100 \text{ pc}); M_{gas} = 1e5M_{sun} (50 \text{ pc})$
- Halos of ~1e12 M_{sun} @ z=2, selected by halo formation history:
 - (1) no >1:3 merger @ 2<z<3
 - (2) halo growth rate > 500 M_{sun}/yr
 - These criteria represent ~15% of the halos of ~1e12 M_{sun}

The model

- Gadget-2 (Springel+ 2005) version from Davé, Oppenheimer, Finlator (2006..2010):
 - Primordial + metal cooling
 - Haardt & Madau (2001) UV background
 - Momentum-driven super-wind (kinetic FB) model (following Murray, Quataert & Thompson 2005)
 - Metal and mass (gas recycling) feedback from: SNII, SNIa and AGB stars

The model – modifications

• Effective EOS for star-forming gas:

- Isothermal with a polytropic (γ_{eff}=4/3) pressure floor → Jeans mass resolved
- Schmidt law for star-formation
 - sSFR ~ $\rho^n \rightarrow$ Kennicutt 1998 star-formation law
- Explicit threshold on Σ_g for star-formation

The role of the wind

- Reduced M_{*}/M_h ('galaxy formation efficiency')
- Increased gas fractions
- Increased sSFR

The role of the wind

Disk stability

stiff EOS (Springel & Hernquist 2003)

γ=4/3 EOS

3 4 5

Clump survival and the SF law

• Interplay between T_{SF}/η and dynamical time:

Kennicutt 1998 law
 ⇒ Transient clumps

Constant T_{SF} = 1Gyr
 (Genzel+ 2010, Daddi+ 2010)
 ⇒ Enough time to virialize

Mock images and dust

Observed optical

Observed J-band

Observed H-band

Mock images and dust

Observed optical Observed J-band

Observed H-band

Clump kinematics

- Clumps are minima in vertical velocity dispersion, σ~20 km/s
- Clumps have circular velocities (GM/R)^{0.5}
 ~50-100 km/s
- But these are hard to observe, because...

Clump kinematics

- Clumps are not virialized, i.e. they are collapsing until they are dispersed
- 'beam smearing'
- ⇒ Best observed resolution may be able to dynamically detect the clumps only marginally

Conclusions and prospect

- Momentum-driven winds and resolution of ~100pc make gas-rich star-forming disks at z~2
- A model where clumps disrupt before they virialize seems consistent (or to say the least, as consistent as other models) with observations
- What next:
 - More (and more representative) halos
 - Investigate the origin of large velocity dispersions
 - Quantitative/statistical comparison with observations