Molecular Hydrogen in Simulations of Dwarf Galaxies

> Charlotte Christensen University of Washington

Tom Quinn, Fabio Governato, James Wadsley, Alyson Brooks, Adrienne Stilp

H_2 in Dwarf Galaxies

Dwarfs are an extreme environment for SF

- SF traces H₂ better than HI and total H (for example, Bigiel et al 08)
- H_2 important coolant at 200 K < T < 3000 K

(Glover & Abel 08, Gnedin et al 10)

H₂ in Dwarf Galaxies

Dwarfs are an extreme environment for SF

However, H_2 is difficult to observe in dwarfs

Leroy et al 08

 SF traces H₂ better than HI and total H (for example, Bigiel et al 08)

• H_2 important coolant at 200 K < T < 5000 K

(Glover & Abel 08, Gnedin et al 10)

Simulations of H_2 In Galaxies

 Until recently, most simulations of galaxies did not include H₂

 New Simulations with GMCs/H₂ (Gnedin et al 09, 10a, 10b, Papadopoulos & Pelupessy10, Pelupessy et al 06, Pelupessy & Papadopoulos 09, Robertson & Kravtsov 08)

Link H₂, metallicity and Kennicutt-Schmidt Law

Simulations of H_2 In Galaxies

 Until recently, most simulations of galaxies did not include H₂

 New Simulations with GMCs/H₂ (Gnedin et al 09, 10a, 10b, Papadopoulos & Pelupessy10, Pelupessy et al 06, Pelupessy & Papadopoulos 09, Robertson & Kravtsov 08)

Link H₂, metallicity and Kennicutt-Schmidt Law

H₂ in cosmological sims. to z=0

The Code

- Gasoline (Wadsley et al 04), an SPH code with
 - Cosmic UV background radiation
 - H & He ionization
 - Metal cooling
 - Metal diffusion
 - Star formation
 - Supernovae feedback

- Which reproduces
 - Damped Lyman-α systems (Pontzen et al 08, 10)
 - Mass-metallicity relation (Brooks et al 07)
 - Broken exponential disks in spirals (Roskar et al 08)
 - HI holes
 - Tully-Fisher relation (Governato et al 07)
 - Realistic dwarfs (Governato et al 10)

H_2 Implementation

- H₂ abundances per particle
 - Integrated through simulation
 - Non-equilibrium
 - Based on local formation and destruction rates

(FUSE, Gillmon et al. 06 & Wolfire et al. 08)

Formation and

- Forms on dust (metals)
 (Wolfire et al 08)
 - Metallicity
 - Density
 - Gas clumpyness (McKee & Ostriker et al 07)

Destruction

- Destroyed by LW radiation
 - Flux from local young stars
- Self-shielding and shielding by dust (Draine & Bertoldi 96)
 - Column length/density (Pavlovski et al 02)
 - Metallicity

A Dwarf Galaxy Simulated 4 Ways

- ΛCDM cosmology
- Zoomed-in initial conditions
- Final Galaxy:
 - $M_{vir} = 4 \times 10^{10} M_{\odot}$
 - V₂₀₀ = 58 km/s
- Resolution
 - $M_{gp} \approx 4 \times 10^4 M_{\odot}$
 - $h \ge 30pc$ in disk

Star-Formation Law

Probabilistic, based on local gas properties

- Formation time: $t_{dyn} \propto \rho^{-1/2}$
- Efficiency: c*
- + Threshold density allowed: ρ_{min}

Comparing Four Simulations

- No H₂, Standard SF
 - $c^* = 0.1$, $\rho_{min} = 10$ amu/cc
- H₂, Standard SF
 - $c^* = 0.1$, $\rho_{min} = 10$ amu/cc
- H₂, H₂ based SF
 - $c^* = H_2/(HI + H_2) 0.1$, $\rho_{min} = 0.1$ amu/cc
- H₂, High-H₂ based SF
 - $c^* = H_2/(HI + H_2) 0.1$, $\rho_{min} = 0.1$ amu/cc,
 - $H_2/(HI + H_2) \ge 0.1$

Reproducing the Resolved Kennicutt-Schmidt Law at z=0

Mock THINGS
 (Walter et al 08)
 observation

♦ HI

Reproducing the Resolved Kennicutt-Schmidt Law at z=0

HI
 Mock THINGS

 (Walter et al 08)
 observation

◆ H₂

Reproducing the Resolved Kennicutt-Schmidt Law at z=0

Mock THINGS
 (Walter et al 08)
 observation

♦ HI

H₂
 SFR
 Mock FUV and 24µm observations

Sunrise, Jonsson 06

Reproducing the Resolved Kennicutt-Schmidt Law at z=0 Bigiel et al 08

HI
 Mock THINGS

 (Walter et al 08)
 observation

H₂
SFR
Mock FUV and 24µm

observations

Stellar Profiles

Stellar Profiles

High H₂ SF

Sunrise, Jonsson 06

Star-Formation Histories

Conclusions

- More accurate modeling of physics
- Resolved Kennicutt- Schmidt Law similar in all simulations
- H₂ extends young stellar disks
- H₂ extends SFH

Future Work

- Star formation maps at high redshift
- Wider range of galaxy masses at similar or higher resolution
 - Scaling relations
- Increasing mass resolution
 - Mock CO observations
- Comparisons to ALMA