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® Motivation: neutrinos and the cosmos
(I) ® Neutrinos in hot and dense media

® Structure of QKEs from quantum field theory

® Anatomy of the QKEs

® Coherent evolution: flavor and spin

(1)

® |nelastic collisions

® Comparison to other approaches & future challenges

Talk by A.Vlasenko

® Neutrino-antineutrino transformation in astrophysical
environments



Structure of the QKEs
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e FEH,C: 2nfx 2nf matrices, all components coupled in general

e D, H,C are functionals of F F: non-linear system



Interlude on kinematics

® For ultra-relativistic V’s of 3-momentum p, express all Lorentz
tensors in terms of following basis:
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Interlude on kinematics

® For ultra-relativistic V’s of 3-momentum p, express all Lorentz
tensors in terms of following basis:
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® Four-vector components along basis vectors:
VH — Vi=n-V Vi=ua, -V

J"=n-0 J'=uxz;-0



Interlude on potentials

® Neutrino self-energy diagrams — v v,€e,n,p

in-medium 4-vector potential (time-
and space-like components in
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Interlude on potentials

® Neutrino self-energy diagrams — vy €1, p

in-medium 4-vector potential (time-
and space-like components in
. . . l/

non-isotropic medium)

e Computed from neutrino interactions in the Standard Model. Ex:
neutrino-matter interaction at low-energy can be put in the form
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Interlude on potentials

Neutrino self-energy diagrams — v V61, p
in-medium 4-vector potential (time-
and space-like components in
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non-isotropic medium) @

2Nnf X 2N matrix structure;:
YE 0
YH (x) = R
0 x¥

Induced interaction

Ling = — IZL21‘1'['%;‘!'}435 — E’RzLyR + h.c.



Interlude on potentials

Neutrino self-energy diagrams — v V61, p
in-medium 4-vector potential (time-
and space-like components in

. . . 1 7 / / I/
non-isotropic medium) @

2ns X 2nf matrix structure:

Potential for L-handed V’s
0
YH (x) = @

- T
0 X
Induced interaction

Ling = — IZL21‘1'['%;‘!'}435 — E’RzLyR + h.c.



Interlude on potentials

Neutrino self-energy diagrams — v V61, p
in-medium 4-vector potential (time-
and space-like components in

. . . V V | 24 1%
non-isotropic medium) @

2ns X 2nf matrix structure:

Potential for L-handed V’s
Z# (I) _ @ Potential for R-handed V’s:
Dirac: X1 o< Gpm?® ~ O(€?)

Majorana: X = —X5

Induced interaction

Ling = — ﬁLERyL — EREL”R + h.c.



Interlude on potentials

® Neutrino self-energy diagrams — vy €1, p

in-medium 4-vector potential (time-
and space-like components in

non-isotropic medium)

® 2nfX 2nf matrix structure:
Potential for L-handed V’s
— @ Potential for R-handed V’s:
- ' Dirac: X1 o< Gpm?® ~ O(€?)
Majorana: X = —X5

® For a test V of momentum p, get components

. )
Eh —n (p) Y approximately along Vv trajectory
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approximately transverse
to V trajectory
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Interlude on potentials

® Neutrino self-energy diagrams — v V61, p
in-medium 4-vector potential (time-
and space-like components in
non-isotropic medium) z y -
® Explicit form of neutrino-induced 2r:
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Anatomy of the QKEs



Drift & force terms
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Drift & force terms
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® Simple interpretation if one notes that
V(+) and V(-) dispersion relations are:
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Drift & force terms
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® Simple interpretation if one notes that
V(+) and V(-) dispersion relations are:

® T[hen one
finds:

® Generalization
of familiar

e
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Coherent evolution

iDF ={H, F] +iC
iDF ={H, F| + iC

( Coherent evolution:
vacuum mass &

forward scattering

(refractive potential)

“MSW”




Coherent evolution
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® Mapping of the two approaches: o
off-diagonal entries in f.L encode ffﬁ = 1, UE
information about relative QM phases -
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® Not clear how to include inelastic collisions in wave-function approach



Coherent evolution

® Controlled by 2ns x 2ns Hamiltonian-like operators
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Coherent evolution

® Controlled by 2ns x 2ns Hamiltonian-like operators
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Coherent evolution

® Controlled by 2ns x 2ns Hamiltonian-like operators

- HR Hm T ER Hm
H(H;’rn HL) H(H’L HL)
fr - e’*’jaizguzng)

Standard vacuum mass  Additional O(€2) terms if
term + medium refraction  potential has space-like

(included in all analyses) components

Zfﬁ = 1/2(X} p £ X3 )



Coherent evolution

® Controlled by 2ns x 2ns Hamiltonian-like operators
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® Qualitatively new O(g?) effect: coherent conversion of LH <& RH V’s

® Need anisotropic environment
(transverse component of 2)

® Need axial components, coupling to spin
[ I-flavor Hm ~ mv/p (2R - 21)"]

® Potentially big impact: Dirac (active-
sterile) vs Majorana (V-V)




More on spin-mixing term

® Effect can be derived using effective hamiltonian approach
(i, 7' ' 1,7, h) = —i(2m)* 2|p1 6 (p — p)[Hjion (P)

® Use medium-modified neutrino Lagrangian in perturbation theory
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More on spin-mixing term

® Effect can be derived using effective hamiltonian approach

(i, W' |, 5. h) = —i(2m)* 20p1 6 (p—p' M} (p)

® Use medium-modified neutrino Lagrangian in perturbation theory
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* 21 rR: medium-induced vector potentials
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* Even in simple “bulb” model for SN: SR(I) # 0




More on spin-mixing term

® Effect can be derived using effective hamiltonian approach

(i, 7', ' | G, 7, h) = —i(2m)? 2[p1 6 (p — p' )Mo, ()

® Use medium-modified neutrino Lagrangian in perturbation theory
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More on spin-mixing term

® Effect can be derived using effective hamiltonian approach
(i, ', 0 | 4,7, h) = —i(2m)? 2[p] 6 (p — p )M}, ()

® Similar mixing is induced by magnetic moment (Dirac for simplicity)

4 )

AL = (p,/2) vrow F* v, + hec.
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® |-flavor result

transverse component

%LR (p) — My E - if+ (p) of the magnetic field

See de Gouvea & Shalgar for impact on SN neutrino collective oscillations



>~ X -
= 5 2 F

aliesl e
= S

Inelastic collisions

iDF = [H, F| +iC
“)| {DF =[H,F]|+iC

N

[

J

“Boltzmann”



Inelastic collisions

® Controlled by 2nf x 2n¢ gain and loss potentials [ 1*[F, F fenp,.]
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® []* are non-diagonal in both flavor and spin (— decoherence)



® Example: CiL (upper nf x nf block) induced by neutrino scattering
off medium particles (e,p,n,...) in isotropic environment
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® Example: CiL (upper nf x nf block) induced by neutrino scattering
off medium particles (e,p,n,...) in isotropic environment
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Comparison with other QKEs
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® Restricting to fuL and isotropic media, equivalent to Sigl-Raffelt



Comparison with other QKEs
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NPB 406, 423 (1993)

® Restricting to fuL and isotropic media, equivalent to Sigl-Raffelt

® Similar in form to Strack-Burrows and Zhang-Burrows
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But H, C, ﬁ' are quite different
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Comparison with other QKEs
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® Quite different from Volpe et al,, who include “abnormal
densities” (correlations of V and V of opposite momentum) and
discuss their coherent evolution coupled to “normal densities”.
We do not include this, based on Lgradients >> LdeBroglie



Summary & future challenges

Neutrino QKEs can be formulated from QFT + power counting
in ratio of length scales (Losc, Lmfp, Lgradients >> LdeBroglic)

Many expected features, some surprising ones (spin oscillations).
See A.Vlasenko’s talk for first applications to astrophysics

Challenges:
® Explicit form of the collision term (in progress)

e Computational implementation



Summary & future challenges

Neutrino QKEs can be formulated from QFT + power counting
in ratio of length scales (Losc, Lmfp, Lgradients >> LdeBroglic)

Many expected features, some surprising ones (spin oscillations).
See A.Vlasenko’s talk for first applications to astrophysics

Challenges:
® Explicit form of the collision term (in progress)

e Computational implementation

Early Universe: FO¢Gp) — F(t|p|) —  Fip (t)

isotropy: binning
no L-R coherence

2+ (nf)2«n|p| coupled ODEs, initial value problem




Summary & future challenges

® Neutrino QKEs can be formulated from QFT + power counting
in ratio of length scales (Losc, Lmfp, Lgradients >> LdeBroglic)

® Many expected features, some surprising ones (spin oscillations).
See A.Vlasenko’s talk for first applications to astrophysics

® Challenges:

® Explicit form of the collision term (in progress)

e Computational implementation

; ‘Q5 Supernovae with spherical symmetry:
(aﬁ F) Fxp) = F(rIp.O) — Fiplo (r)

geometry binning

all © contribute N
4« (nf)2+njp|xne coupled ODEs, boundary value problem



