
ORNL is managed by UT-Battelle
for the US Department of Energy

Appalachian State Colloquium 4/18/2014

Bronson Messer

Scientific Computing
& Theoretical
Astrophysics Groups

Oak Ridge National
Laboratory

&

Department of
Physics & Astronomy

University of
Tennessee

Killing stars on
supercomputers for the
next 10 years

Mapping Multi-Physics
Problems to Today’s
Architectures

Wednesday, July 23, 14

Strange things are afoot...

•We’ve done some parallel
programming so far this
week.

•Mostly confined to domain
decomposition, implemented
with MPI.

•This is 20th-century
computing.

Wednesday, July 23, 14

Nuclear astrophysics INCITE allocations from
2010 - present
• Average number of cpu-hours/yr ~152 M
• In aggregate, just less than 10% of the
total available each year from 2010 - 2014
– Allocations at NERSC are also above-

average in size
– PRAC is dominated by astrophysics,

including considerable allocations for stellar
astrophysics

• This excellent record is due to
– the formulation of large, important problems
– demonstrated ability to efficiently exploit the

largest computational platforms

• Will this trend continue to the exascale?
Can we continue to solve big problems
efficiently?

Wednesday, July 23, 14

ar
X

iv
:a

st
ro

-p
h/

99
12

20
2v

1
 9

 D
ec

 1
99

9

The Effects of Moore’s Law and Slacking 1 on Large
Computations

Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson,
J.J. Charfman

Steward Observatory, University of Arizona

Abstract

We show that, in the context of Moore’s Law, overall productivity

can be increased for large enough computations by ‘slacking’ or waiting

for some period of time before purchasing a computer and beginning the

calculation.

According to Moore’s Law, the computational power available at a particular
price doubles every 18 months. Therefore it is conceivable that for sufficiently
large numerical calculations and fixed budgets, computing power will improve
quickly enough that the calculation will finish faster if we wait until the available
computing power is sufficiently better and start the calculation then.

Figure 1:

This is illustrated in the above plot. Work is measured in units of whatever a
current machine can accomplish in one month and time is measured in months.

1This paper took 2 days to write

1

ar
X

iv
:a

st
ro

-p
h/

99
12

20
2v

1
 9

 D
ec

 1
99

9

The Effects of Moore’s Law and Slacking 1 on Large
Computations

Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson,
J.J. Charfman

Steward Observatory, University of Arizona

Abstract

We show that, in the context of Moore’s Law, overall productivity

can be increased for large enough computations by ‘slacking’ or waiting

for some period of time before purchasing a computer and beginning the

calculation.

According to Moore’s Law, the computational power available at a particular
price doubles every 18 months. Therefore it is conceivable that for sufficiently
large numerical calculations and fixed budgets, computing power will improve
quickly enough that the calculation will finish faster if we wait until the available
computing power is sufficiently better and start the calculation then.

Figure 1:

This is illustrated in the above plot. Work is measured in units of whatever a
current machine can accomplish in one month and time is measured in months.

1This paper took 2 days to write

1

astro-ph/9912202

ar
X

iv
:a

str
o-

ph
/9

91
22

02
v1

 9
 D

ec
 1

99
9

The Effects of Moore’s Law and Slacking 1 on Large
Computations

Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson,
J.J. Charfman

Steward Observatory, University of Arizona

Abstract

We show that, in the context of Moore’s Law, overall productivity

can be increased for large enough computations by ‘slacking’ or waiting

for some period of time before purchasing a computer and beginning the

calculation.

According to Moore’s Law, the computational power available at a particular
price doubles every 18 months. Therefore it is conceivable that for sufficiently
large numerical calculations and fixed budgets, computing power will improve
quickly enough that the calculation will finish faster if we wait until the available
computing power is sufficiently better and start the calculation then.

Figure 1:

This is illustrated in the above plot. Work is measured in units of whatever a
current machine can accomplish in one month and time is measured in months.

1This paper took 2 days to write

1

Wednesday, July 23, 14

Google-stalk...

Wednesday, July 23, 14

Ø

☡

J. J. Charfman - The Snarky Nicolas
Bourbaki of Arizona’s Steward Observatory

dangerous bends, indeed,
are ahead...

Wednesday, July 23, 14

Architectural Trends – No more free lunch
• CPU clock rates quit

increasing in 2003
• P = CV2f

Power consumed is
proportional to the
frequency and to the
square of the voltage

• Voltage can’t go any lower,
so frequency can’t go
higher without increasing
power

• Power is capped by heat
dissipation and $$$

• Performance increases
have been coming through
increased parallelism

Herb Sutter: Dr. Dobb’s Journal:
http://www.gotw.ca/publications/concurrency-ddj.htm

Wednesday, July 23, 14

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Why are machines slowing
down?

•1 gram TNT = 4184 joules (NIST)

• 1 MW-hour = 3.6x109 joules

• 1 jaguar-hour ~ 7 MW-hours ~ 2.5x1010 joules ~ 6 tons TNT

• 1 supernova simulation ~ 0.6 jaguar-months ~ 2.6 kton
• Trinity ~ 19 kton

7 MegaWatts

But, you should care even if you don’t use
this much electricity...

Wednesday, July 23, 14

http://en.wikipedia.org/wiki/Joule
http://en.wikipedia.org/wiki/Joule
http://en.wikipedia.org/wiki/Joule

Wednesday, July 23, 14

ORNL’s “Titan” Hybrid System:
Cray XK7 with AMD Opteron and NVIDIA Tesla processors

4,352 ft2

404 m2

SYSTEM SPECIFICATIONS:
Peak performance of 27.1 PF

24.5 GPU + 2.6 CPU
18,688 Compute Nodes each with:

16-Core AMD Opteron CPU
NVIDIA Tesla “K20x” GPU
32 + 6 GB memory

512 Service and I/O nodes
200 Cabinets
710 TB total system memory
Cray Gemini 3D Torus Interconnect
8.8 MW peak power

>10x

~2x

Wednesday, July 23, 14

What will the exascale look
like?

• “Node architectures are expected to change
dramatically in the next decade, becoming
more hierarchical and heterogeneous.”

• “. . . computer companies are dramatically
increasing on-chip parallelism to improve
performance. The traditional doubling of
clock speeds every 18 to 24 months is being replaced
by a doubling of cores or other parallelism
mechanisms.”

• “Systems will consist of one hundred thousand to one
million nodes and perhaps as many as a billion cores.”

Architectures and Technology for Extreme Scale Computing, Workshop Report, 2009;
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/Arch-TechGrandChallengesReport.pdf

Wednesday, July 23, 14

http://www.er.doe.gov/ascr/ProgramDocuments/Docs/Arch-TechGrandChallengesReport.pdf
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/Arch-TechGrandChallengesReport.pdf

Hierarchical Parallelism
• MPI parallelism between nodes (or PGAS)
• On-node, SMP-like parallelism via threads (or

subcommunicators, or…)
• Vector parallelism

– SSE/AVX/etc on CPUs
– GPU threaded parallelism

• Exposure of unrealized parallelism is essential to exploit all
near-future architectures.

• Uncovering unrealized parallelism and improving data locality
improves the performance of even CPU-only code.

• Experience with vanguard codes at OLCF suggests 1-2 person-
years is required to “port” extant codes to GPU platforms.

• Likely less if begun today, due to better tools/compilers

11010110101000
01010110100111
01110110111011

01010110101010

Wednesday, July 23, 14

So how should we program for
these new systems?

• What to do – Good Threading (OpenMP)
–Must do high level threading
–Thread must access close shared memory rather

than distant shared memory
–Load Balancing

• What to do – Good Vectorization
–Vectorization advantage allows for introducing

overhead to vectorize
–Vectorization doesn’t rely on having HW that is

described as “vector”

Wednesday, July 23, 14

• Related, computationally-
intensive topics will, perhaps,
have to work harder to identify
additional parallelism outside of
large stellar simulations, but
plenty of opportunity exists.

- high-density physics
- nuclear structure and reactions

• Simulation codes for stellar evolution and explosions
- Exemplars of “multiphysics application codes”
- Typically many degrees-of-freedom per spatial grid point

o radiation transport
o nuclear burning

- Spatial domains typically parallelized via domain decomposition

Good news! Stellar astrophysics tends to have a
lot of unrealized parallelism at present

Wednesday, July 23, 14

• A common directive programming model for today’s GPUs
• Announced at SC11 conference
• Offers portability between compilers

• Drawn up by: NVIDIA, Cray, PGI, CAPS
• Multiple compilers offer portability, debugging,

• permanence

• Works for Fortran, C, C++
• Standard available at www.OpenACC-standard.org
• Initially implementations targeted at NVIDIA GPUs

• Current version: 1.0 (November 2011)
• Compiler support:

• Cray CCE: complete 1.0
• PGI Accelerator: complete 1.0 + extensions
• CAPS: complete 1.0 + extensions

Wednesday, July 23, 14

http://www.openacc-standard.org/
http://www.openacc-standard.org/

Why use OpenACC Directives?

• Productivity
–Higher level programming model
–a la OpenMP

• Portability
–ignore directives, portable to the host
–portable across different accelerators
–performance portability

• Performance feedback

Wednesday, July 23, 14

 1 void
 2 computeMM0_saxpy(float C[][WB], float A[][WA], float B[][WB],
 3 int hA, int wA, int wB)
 4 {
 5 #pragma acc region
 6 {
 7 #pragma acc for parallel vector(16) unroll(4)
 8 for (int i = 0; i < hA; ++i) {
 9 for (int j = 0; j < wB; ++j) {
 10 C[i][j] = 0.0 ;
 11 }
 12 for (int k = 0; k < wA; ++k) {
 13 for (int j = 0; j < wB; ++j) {
 14 C[i][j] = C[i][j]+A[i][k]*B[k][j];
 15 }
 16 }
 17 }
 18 }
 19 }
}

 1 void matrixMulGPU(cl_uint ciDeviceCount, cl_mem h_A, float* h_B_data,
 2 unsigned int mem_size_B, float* h_C)
 2 {
 3 cl_mem d_A[MAX_GPU_COUNT];
 4 cl_mem d_C[MAX_GPU_COUNT];
 5 cl_mem d_B[MAX_GPU_COUNT];
 6
 7 cl_event GPUDone[MAX_GPU_COUNT];
 8 cl_event GPUExecution[MAX_GPU_COUNT];
 9
 12 // Create buffers for each GPU
 13 // Each GPU will compute sizePerGPU rows of the result
 14 int sizePerGPU = HA / ciDeviceCount;
 15
 16 int workOffset[MAX_GPU_COUNT];
 17 int workSize[MAX_GPU_COUNT];
 18
 19 workOffset[0] = 0;
 20 for(unsigned int i=0; i < ciDeviceCount; ++i)
 21 {
 22 // Input buffer
 23 workSize[i] = (i != (ciDeviceCount - 1)) ? sizePerGPU : (HA - workOffset[i]);
 24
 25 d_A[i] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, workSize[i] * sizeof(float) * WA, NULL,NULL);
 26
 27 // Copy only assigned rows from host to device
 28 clEnqueueCopyBuffer(commandQueue[i], h_A, d_A[i], workOffset[i] * sizeof(float) * WA,
 29 0, workSize[i] * sizeof(float) * WA, 0, NULL, NULL);
 30
 31 // create OpenCL buffer on device that will be initiatlize from the host memory on first use
 32 // on device
 33 d_B[i] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 34 mem_size_B, h_B_data, NULL);
 35
 36 // Output buffer
 37 d_C[i] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, workSize[i] * WC * sizeof(float), NULL,NULL);
 38
 39 // set the args values
 40 clSetKernelArg(multiplicationKernel[i], 0, sizeof(cl_mem), (void *) &d_C[i]);
 41 clSetKernelArg(multiplicationKernel[i], 1, sizeof(cl_mem), (void *) &d_A[i]);
 42 clSetKernelArg(multiplicationKernel[i], 2, sizeof(cl_mem), (void *) &d_B[i]);
 43 clSetKernelArg(multiplicationKernel[i], 3, sizeof(float) * BLOCK_SIZE *BLOCK_SIZE, 0);
 44 clSetKernelArg(multiplicationKernel[i], 4, sizeof(float) * BLOCK_SIZE *BLOCK_SIZE, 0);
 45
 46 if(i+1 < ciDeviceCount)
 47 workOffset[i + 1] = workOffset[i] + workSize[i];
 48 }
 49 // Execute Multiplication on all GPUs in parallel
 50 size_t localWorkSize[] = {BLOCK_SIZE, BLOCK_SIZE};
 51 size_t globalWorkSize[] = {shrRoundUp(BLOCK_SIZE, WC), shrRoundUp(BLOCK_SIZE, workSize[0])};
 52 // Launch kernels on devices
 53 for(unsigned int i = 0; i < ciDeviceCount; i++)
 54 {
 55 // Multiplication - non-blocking execution
 56 globalWorkSize[1] = shrRoundUp(BLOCK_SIZE, workSize[i]);
 57 clEnqueueNDRangeKernel(commandQueue[i], multiplicationKernel[i], 2, 0, globalWorkSize, localWorkSize,
 58 0, NULL, &GPUExecution[i]);
 59 }
 60 for(unsigned int i = 0; i < ciDeviceCount; i++)
 61 {
 62 clFinish(commandQueue[i]);
 63 }
 64 for(unsigned int i = 0; i < ciDeviceCount; i++)
 65 {
 66 // Non-blocking copy of result from device to host
 67 clEnqueueReadBuffer(commandQueue[i], d_C[i], CL_FALSE, 0, WC * sizeof(float) * workSize[i],
 68 h_C + workOffset[i] * WC, 0, NULL, &GPUDone[i]);
 69 }
 70 // CPU sync with GPU
 71 clWaitForEvents(ciDeviceCount, GPUDone);
 72
 73 // Release mem and event objects
 74 for(unsigned int i = 0; i < ciDeviceCount; i++)
 75 {
 76 clReleaseMemObject(d_A[i]);
 77 clReleaseMemObject(d_C[i]);
 78 clReleaseMemObject(d_B[i]);
 79 clReleaseEvent(GPUExecution[i]);
 80 clReleaseEvent(GPUDone[i]);
 81 }
 82 }
 83 __kernel void
 84 matrixMul(__global float* C, __global float* A, __global float* B,
 85 __local float* As, __local float* Bs)
 86 {
 87 int bx = get_group_id(0), tx = get_local_id(0);
 88 int by = get_group_id(1), ty = get_local_id(1);
 89 int aEnd = WA * BLOCK_SIZE * by + WA - 1;
 90
 91 float Csub = 0.0f;
 92
 93 for (int a = WA*BLOCK_SIZE*by , b = BLOCK_SIZE * bx;
 94 a <= aEnd; a += BLOCK_SIZE, b += BLOCK_SIZE*WB) {
 95 As[tx + ty * BLOCK_SIZE] = A[a + WA * ty + tx];
 96 Bs[tx + ty * BLOCK_SIZE] = B[b + WB * ty + tx];
 97 barrier(CLK_LOCAL_MEM_FENCE);
 98 for (int k = 0; k < BLOCK_SIZE; ++k)
 99 Csub += As[k + ty * BLOCK_SIZE]*Bs[tx + k * BLOCK_SIZE] ;
 101 barrier(CLK_LOCAL_MEM_FENCE);
 102 }
 103 C[get_global_id(1) * get_global_size(0) + get_global_id(0)] = Csub;
 104
 105 }

OpenCL

OpenAcc

CUDA	 C
 1 void
 2 __global__ void matrixMul(float* C, float* A, float* B, int wA, int wB)
 3 {
 4 int bx = blockIdx.x;
 5 int by = blockIdx.y;
 6 int tx = threadIdx.x;
 7 int ty = threadIdx.y;
 8 int aBegin = wA * BLOCK_SIZE * by;
 9 int aEnd = aBegin + wA - 1;
 10 int aStep = BLOCK_SIZE;
 11 int bBegin = BLOCK_SIZE * bx;
 12 int bStep = BLOCK_SIZE * wB;
 13 float Csub = 0;
 14 for (int a = aBegin, b = bBegin;
 15 a <= aEnd;
 16 a += aStep, b += bStep) {
 17 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
 18 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
 19 AS(ty, tx) = A[a + wA * ty + tx];
 20 BS(ty, tx) = B[b + wB * ty + tx];
 21 __syncthreads();
 22 for (int k = 0; k < BLOCK_SIZE; ++k)
 23 Csub += AS(ty, k) * BS(k, tx);
 24 __syncthreads();
 25 }
 26 int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
 27 C[c + wB * ty + tx] = Csub;
 28 }
 29
 30 void
 31 domatmul(float* C, float* A, float* B, unsigned int hA, unsigned int wA , unsigned wB)
 32 {
 33 unsigned int size_A = WA * HA;
 34 unsigned int mem_size_A = sizeof(float) * size_A;
 35 unsigned int size_B = WB * HB;
 36 unsigned int mem_size_B = sizeof(float) * size_B;
 37 unsigned int size_C = WC * HC;
 38 unsigned int mem_size_C = sizeof(float) * size_C;
 39 float *d_A, *d_B, *d_C;
 40
 41 cudaMalloc((void**) &d_A, mem_size_A);
 42 cudaMalloc((void**) &d_B, mem_size_B);
 43 cudaMalloc((void**) &d_C, mem_size_C);
 44 cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice);
 45 cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice);
 46
 47 dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
 48 dim3 grid(WC / threads.x, HC / threads.y);
 49
 50 matrixMul<<< grid, threads >>>(d_C, d_A, d_B, WA, WB);
 51
 52 cudaMemcpy(h_C, d_C, mem_size_C, cudaMemcpyDeviceToHost);
 53
 54 cudaFree(d_A);
 55 cudaFree(d_B);
 56 cudaFree(d_C);
 57 }

Wednesday, July 23, 14

Risk factors
• Will there be machines to run my OpenACC code on?

– Now? Lots of Nvidia GPU accelerated systems
• Cray XK7s: CSCS tödi, HLRS hermit, ORNL titan...
• Lots of other GPU machines in Top100 (OpenACC is multi-vendor)

– Future? OpenACC can be targeted at other accelerators
• PGI and CAPS already target Intel Xeon Phi, AMD GPUs

– Plus you can always run on CPUs using same codebase
• Will OpenACC continue?

– Support? Cray and PGI (at least) are committed to support OpenACC
• Lots of big customer pressure to continue to run OpenACC

– Develop? OpenACC v2.0 standard out
– Lots of new partners joined committee at end of last year

• Will OpenACC be superseded by something else?
– Auto-accelerating compilers? If only!

• Never really managed it for threading real HPC applications on the CPU
• Data locality adds to the challenge

– OpenMP accelerator directives? OpenACC work not wasted
• Very similar programming model; can transition easily
• Cray (co-chair), PGI very active in OpenMP accelerator subcommittee

Wednesday, July 23, 14

Posited Exascale Specs

System attributes 2010 “2015”“2015” “2018”“2018”

System peak 2 PF 200 PF/s200 PF/s 1 Exaflop/s1 Exaflop/s

Power 6 MW 15 MW15 MW 20 MW20 MW

System memory 0.3 PB 5 PB5 PB 32–64 PB32–64 PB

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF

Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)

System size (nodes) 18,700 50,000 5,000 1,000,000 100,000

Total node interconnect BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s

MTTI day O(1 day)O(1 day) O(1 day)O(1 day)

2018 2023?

Wednesday, July 23, 14

Example goals/highlights from NP Exascale
Workshop report (2009)

100x Tera Peta 100x Peta 10x Peta Exa 10x Tera -flop year
sustained

Full quantum kinetics

150-species nuclear
network

Large (precision) nuclear
network

Multi-energy, multi-angle
neutrino transport

Multi-energy neutrino transport
and coherent neutrino flavor

mixing

All of these goals are attainable, but will require new algorithms and
implementations to bridge the gap to the posited architectures.

CC SNe

http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Np_report.pdf

Wednesday, July 23, 14

http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Np_report.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Np_report.pdf

Achieving high spatial (or phase-space, etc.)
resolution will be very difficult.

 turbulence is frozen by expansion

Khokhlov ca. 2003

Total memory on the entire exascale system will be O(10 PB)

SN Ia

Wednesday, July 23, 14

Locally bulk-synchronous programming model is
not a viable path for maximum performance on
these new platforms

• FLOP/s are cheap and moving data is expensive.

• Even perfect knowledge of resource capabilities at every moment and perfect load
balancers will not rescue billion-thread SPMD implementations of PDE simulations.

• Cost of rebalancing frequently is too large, but the Amdahl penalty of failing to
rebalance is fatal.

• To take full advantage of asynchronous algorithms, we need to develop greater
expressiveness in scientific programming.
- Create separate threads for logically separate tasks, whose priority is a

function of algorithmic state, not unlike the way a time-sharing OS works.
- Join priority threads in a directed acyclic graph (DAG), a task graph showing

the flow of input dependencies; fill idleness with noncritical work or steal work.

Comments taken directly from keynote
address by David Keyes at EU-US HPC
Summer School, June 2012

Wednesday, July 23, 14

Asynchronous execution models via task
scheduling
• Examples exist
already in other
domains
–MAGMA (linear

algebra)
–MADNESS (DFT)
–Uintah (terrestrial

combustion)

• Operator-split physics
modules become
“tasks” associated
with execution
threads

Wednesday, July 23, 14

Will the exascale (or before) machine be
primarily a “strong-scaling” platform?
•Memory constraints provide a hard ceiling for spatial
resolution and number of unknowns.
–bytes/FLOP goes down by an order of magnitude

•Simulations will be certainly be larger, but likely not as
large as one would expect if scaling with FLOPs is
assumed.
–no more than ~10x the number of MPI ranks?
–this connotes no more than factors of ~2 in resolution in

each dimension for 3D

•OK: considerable understanding can be realized by fully
exploring parameter space.
–progenitor mass, rotation, metallicity
–transport approximations, additional physics

Wednesday, July 23, 14

Simulation, code, and data
management become even harder
•Revision control, regression testing, viz, workflow...

Wednesday, July 23, 14

Summary
• The future is now! Computers are not getting faster from the

perspective of a nuclear astrophysicist. They are only getting
“wider.” This is true on the world’s largest supercomputers and
on your laptop!!!!

• The Xeon(Phi)/GPU/BG\Q choice is no choice at all. They are all
versions of a single narrative.

• Stellar astrophysics is rife with unrealized parallelism, but
architectural details and memory (i.e. cost, power) constraints
will present considerable challenges.

• Bulk-synchronous execution is a terrible way to try to exploit
near-future architectures. A new programming model will require
considerably more effort than a simple multi/many-core port.

• Managing large simulations is something we can barely do now,
but how about managing 1000’s, 10’s of thousands, or 100’s of
thousands of simulations? We should not expect to rely on
solutions to be thrown over the fence from developers in other
communities.

Wednesday, July 23, 14

