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Fluid Dynamics
Fluid Dynamics, subsuming both hydrodynamics and 
aerodynamics, is a continuum description of the collective 
behavior of a large number of particles.

The equations of fluid dynamics can be derived from kinetic 
theory in the limit that the collisional mean free path, λ, is 
much smaller than the macroscopic scales of interest, L.

Thus we are concerned with the bulk velocity of the fluid, u, 
while the random velocity of individual fluid particles is only 
considered to the extent that they form an internal energy.

Key to the behavior of fluids is that they, like solids, deform 
under stress.  However, unlike a solid, a fluid shows no 
tendency to return to the former state when the stress is 
removed.
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Quantity of matter can be described by the mass density,
which changes in time and space.

The change of ρ with time in the 
box requires a “flux” of mass 
across the boundary at velocity u.

More formally,

Applying the time independence of V on the left and 
divergence theorem on the right yields

Since this is true for arbitrary V,

Continuity
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Quantity of matter can be described by the mass density,
which changes in time and space.

Continuity

ρ (x,t)
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Quantity of matter can be described by the mass density,
which changes in time and space.

The change of ρ with time in the 
box requires a “flux” of mass 
across the boundary at velocity u.

More formally,

Applying the time independence of V on the left and 
divergence theorem on the right yields

Since this is true for arbitrary V,

Continuity

ρ (x,t) ρuρu

Continuity 
Equation
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Defining Derivatives
When considering a moving fluid, there are two natural 
frames of reference.

1) Eulerian Coordinates, which are fixed in space.

2) Lagrangian Coordinates, which move with the fluid.

To define a Lagrangian (or material) Derivative of a quantity 
f, we must consider both changes that are local in space and 
those that result from movement.

Since ∇⋅(ba⃗) = a⃗⋅∇b + b(∇⋅a)⃗, the continuity equation can be 
transformed from 

into
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Causing Fluid to Move
We next need to understand what generates the velocity, u.

For a co-moving volume, the total momentum is ∫V ρu dV and 
the time rate of change comes entirely from external forces.

These take the form of external body forces, f, e.g., gravity, 
and surface forces, e.g., pressure, P.

Applying the Chain Rule to the left side yields,

Applying the divergence theorem to the right side yields

0
since ρV is 
invariant for 
co-moving 
volumes.  
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Euler Equation
Combining these yields

or, since this applies for arbitrary volumes, 

Written in terms of coordinates fixed in space, this becomes

To make sure we see the physics of this equation, we can 
rewrite this as

Euler 
Equation
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Viscosity
When we wrote the effect of the surface pressure as ∫S P n⃗ dS, 
we implicitly assumed that viscosity was unimportant.

In the general case, Fi = ∫S Σj P σij nj dS, where σij is the stress 
tensor, rather than ∫S P ni dS.

For gases and simple liquids, we can define a dynamical 
viscosity, μ, in which case the stress tensor is 

In this case, the momentum equation becomes

μ is generally very small in astrophysics and the Reynolds 
number, the ratio of inertial forces to viscous forces, is large. 

Navier-Stokes 
Equation.
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Mechanical Energy
The Euler equation includes a gradient of the kinetic energy, 
requiring an equation to evolve the kinetic energy.

Taking the dot product of u/ρ with the Euler equation  

provides such an equation

Simply, the kinetic energy changes in response to work done 
by pressure and body forces. 

This approach may seem arbitrary, but is equivalent to 
calculating the work done by a force as 

mechanical 
energy equation
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Energy Conservation
Of course, kinetic energy is not conserved, rather it is the total 
energy, kinetic + internal (thermal), ½u2 + U.

If we expand our energy equation to include the internal 
energy, we must add terms for the heat generated within the 
volume,  , and the flux of heat across the boundary, F.

Applying the divergence theorem to replace the surface 
integrals

✏
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Energy Equation
As in the prior derivation, the invariance of ρV for co-moving 
volumes simplifies the energy time derivative.  

Once again, we can also remove the volume integral that 
appears in each term, yielding.

Expanding the co-moving derivatives, and merging like 
terms, leaves
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Equation of State
The pressure, P, appears in both the momentum and energy 
equation, yet we have no equation for its evolution.

For all matter, there exist thermodynamic relations linking the 
pressure, density, temperature, internal energy, entropy… 

These are the Equations of State (EoS).

The most widely known is the ideal (monatomic) gas EoS

P V = R T  and U = ³⁄₂ R T,  thus P = ⅔ ρ U

The more generalized version is cast in terms of the adiabatic 
index γ = CP/CV, the ratio of specific heats.

P = (γ−1) ρ U 

where γ = 5/3 for a monatomic gas.
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Polytropic Fluid
For the adiabatic case, the ideal gas EoS can be written as

in which case 

Such EoS are often written in the form 

where n is called the polytropic index.

These polytopic EoS played a large role in early calculations 
of stellar structure and remain useful because a number of 
physical states behave approximately as polytropes.

For example, both the ideal monatomic gas and a non-
relativistic degenerate gas obey P = Κρ⁵⁄₃.

For a relativistic degenerate gas P = Κρ⁴⁄₃, and stars in 
radiative equilibrium also follow this relation.
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The Equations We Solve
In VH-1, and many similar hydrodynamics codes, the Multi-D 
problem is directionally-split into separate 1D solutions along 
the representative directions.  This simplifies the equations.

To allow for different coordinate systems, 
we work in terms of a volume coordinate 
V with cell cross section A

Gradients use a generalized 
spatial coordinate, χ

Momentum is also 
advected transversely.

Total energy E = 
½(𝑢2+𝑣2+𝑤2) + U 
Equation of State
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Spatial Differencing
Transforming continuous variables, f(x), to variables 
represented on a discrete grid, fj, we must approximate spatial 
derivates as differences.  However, the choice is not unique.

For example, ∂f/∂x at x = xj can be written as

forward difference

backward difference

centered difference

Higher order derivatives touch more points on the grid, e.g.,
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Order of Error
Different choices of derivatives affect the error that comes 
from mapping to a discrete grid.  One can estimate this error 
by calculating fj+1 = f(xj+1) = f(xj+Δx) and fj−1 = f(xj−1) = 
f(xj−Δx) using the Taylor series

to calculate the error as a function of Δx.
For both forward and backward differencing the leading error 
in the approximation of ∂f/∂x is ∝ (Δx) ∂2f/∂x2, thus these 
approximations are O(Δx). For centered differencing, the 
error is  O(Δx2) because the ∂2f/∂x2 terms cancel.  

While having a smaller truncation error, centered differencing 
has a tendency to spread sharp features which is detrimental 
in some circumstances.
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Capturing Shocks
Many problems in nuclear 
astrophysics include shocks 
and compositional (contact) 
discontinuities.

Simple differencing schemes 
are challenged by sharp flow 
features like these.

Low order methods tend to 
diffuse these features over 
many zones. 

Higher order methods are less 
diffusive, but can add 
considerable dispersion (noise).

The ASCI/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Solving the Euler Equations

❑ Low-order simple methods 

of solving the Euler 

equations result in 

substantial numerical 

diffusion of flow features. 

❑ Higher-order simple 

methods can result in 

numerical dispersion of 

flow features
❑ Particularly a problem 

around sharp features 
❑ But hydro equations allow 

discontinuities (shocks, 
contacts)

LeVeque, http://www.amath.washington.edu/~claw/

1st order upwind

2nd order Lax-Wendroff

LeVeque
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An alternative, from Godunov, is to 
calculate fluxes by assuming a 
Riemann problem at each interface.

For left wave,   P*− Pl + Wl(u*−ul) = 0

For right wave, P*− Pr − Wr(u*−ur) = 0

where (Pr, ur) & (Pl, ul) characterize 
the unshocked right and left states, 
(P*, u*) are the unknown shocked 
state and 

(P*, u*) can be calculated (iteratively) from the right and left 
wave equations and from these fluxes at the interfaces.
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3.1.6. Solution to RiemannÏs Problem for Gamma-L aw Gases
The next step is to solve RiemannÏs problem at each zone interface using these e†ective left and right states. The general

solution consists of one wave (shock or rarefaction) moving to the left, a second wave traveling to the right, and a contact
discontinuity in between. A typical example of RiemannÏs problem is shown in Figure 16. We make one approximation in
constructing the solution, namely, that the two waves propagating to the left and right are both shocks. This approximation,
which is accurate to third order in the size of the entropy jump across the wave, will produce a small error at rarefactions.
However, rarefactions quickly spread over many zones, so the entropy jump from one zone to the next is usually quite small.
This approach leads to a much more efficient solution, since it avoids the need for logic to determine which formulae to use for
a given wave and also avoids the use of the rarefaction formulae, which contain fractional powers and are therefore expensive
to compute.

We begin by describing the solution to RiemannÏs problem for the simple case of a gamma-law gas. In the following section
we include a description of a method that can be used to treat a general EOS. The following shock jump equations can be
derived from the integral form of the gas dynamics equations. For a shock moving to the left,

P* [ P
l
] W

l
(u* [ u

l
) \ 0 . (68)

For the wave moving to the right,

P* [ P
r
[ W

r
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r
) \ 0 . (69)

The superscript * denotes the postshock state, while the subscripts l and r correspond to the preshock states of the two waves.
The nonlinear Lagrangian wave speeds are given byW
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The values of P* and u* must be identical for both waves. Any di†erence in the two values would lead to additional waves
being generated. Therefore, equations (68) and (69) represent two nonlinear equations with two unknowns (P* and u*), which
can be solved by standard numerical techniques.

FIG. 16.ÈSample Riemann problem starting from shock tube data. Top: Initial discontinuity at t \ 0 located at Bottom: Self-similar evolution of them
i
.

discontinuity for t [ 0, showing the locations of the head of the rarefaction the foot of the rarefaction the contact discontinuity and the shockmhd, mft, mcd, msh .

Riemann Problem
Shock

Contact 
D

iscontinuity

Rarefaction
t = 0

t > 0

Tuesday, July 22, 14



PPM
The Piecewise Parabolic Method, 
introduced by Colella & 
Woodward, improves on 
Godunov’s method by using a 
piecewise parabolic reconstruction 
of flow variables (akin to 
Simpson’s rule for integration) in 
place of piecewise constant.

It adds explicit steeping of contact 
discontinuities and flattening of 
overly narrow shocks.

FLASH and VH-1 both 
incorporate implementations of 
PPM.

FIG. 6.ÈSchematic density proÐle showing the steepening process at a contact discontinuity. The solid line shows the original piecewise parabolic
distribution of the density before steepening. The dot-dashed line in zone i shows the new density proÐle after application of the steepening procedure.

FIG. 7.ÈSimple contact discontinuity, from a FLASH simulation, with the steepening criteria enabled. Note that there are only two zones deÐning the
discontinuity. At this time, the discontinuity has propagated across 320 zones.

FIG. 6.ÈSchematic density proÐle showing the steepening process at a contact discontinuity. The solid line shows the original piecewise parabolic
distribution of the density before steepening. The dot-dashed line in zone i shows the new density proÐle after application of the steepening procedure.

FIG. 7.ÈSimple contact discontinuity, from a FLASH simulation, with the steepening criteria enabled. Note that there are only two zones deÐning the
discontinuity. At this time, the discontinuity has propagated across 320 zones.

Fryxell et al (2000)
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VH1 simulations

Bondi-Hoyle Accretion

LMXB

Core-Collapse SNe

SN remnants
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VH1 simulations

Bondi-Hoyle Accretion

LMXB

Core-Collapse SNe

SN remnants
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Where?
http://astro.physics.ncsu.edu/pub/VH-1/index.php

We will follow the Quick Start guide, but we will foolishly 
jump right into the parallel version of VH-1. This is in 
blatant disregard of the (wise) advice on the the VH-1 site.
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VH1
VH1 is directionally split

The flow solution along each coordinate direction is evolved 
independently

Many time-orderings are possible, but a standard one is to 
take half-timesteps in a pattern like:

x-sweep

y-sweep

z-sweep

z-sweep

y-sweep

x-sweep
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Implementation
This suggests an effective domain decomposition.

Contention is minimized, even though the sub-communicator 
ALLTOALL’s amount to “everybodyTOsomebody”

MN

4N

3N

N+1 N+2 2N

1 2 3 4 Nmype +1 =

jcol =   0       1       2       3       N-1

krow =

        M-1
     
            3

            2

            1
 
            0

Y

Z

MPI_ALLTOALL( MPI_COMM_ROW )

MPI_ALLTOALL( MPI_COMM_COL )

zro(imax,js,ks)

Using M*N processors; X data starts local to proc 
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What does the code look like?
• The basic structure of the vhone.f90 looks like

- Read indat file for job control parameters

- Open history file for recording metadata

- Create the simulation grid

- Set initial conditions

- Loop over time (time = time + dt)
o Hydrodynamic update (directionally split)
o Compute maximum stable time step
o Output data to disk

• If you are not a hydro guy, there might be one surprise: unless 
you set ncycend (and it is not uncommon to set it to some 
really high number), the application never exits.
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What problem are we doing?
The Sod Shock Tube

The Sod problem is a particular kind of Riemann problem

PPM uses an iterated solution of the Riemann problem at zone 
interfaces to evolve the fluxes

If a Godunov code does poorly on Sod, something is amiss...
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Sod solution

shock
contact discontinuity

rarefaction
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