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Deep Learning for Galaxies

(a progress report)

Joel Primack
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Project MAC (the Project on Mathematics and Computation was
launched at MIT with a $2 million grant from the Defense Advanced
Research Projects Agency (DARPA) in 1963. The "Al Group"

including Marvin Minsky (the director), John McCarthy (who

invented Lisp) and others. The MIT Artificial Intelligence Lab was
started in 1970. Early leaders included Minsky and Seymour Papert.
They were initially quite optimistic about how quickly Al would become

practical.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group July 7, 1966

Vision Memo. No. 100.

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers
effectively in the construction of a significant part of a visual system.
The particular task was chosen partky because it can be segmented into
sub-problems which will allow individuals to work independently and yet
participate in the construction of a system complex enough to be a real

landmark in the development of "pattern recognition'l.


https://en.wikipedia.org/wiki/DARPA
https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
https://en.wikipedia.org/wiki/Lisp_programming_language

'Simple’ problems proved most difficult.

* For decades we tried to write down every possible

rule for everyday tasks —> impossible

* Every day tasks we consider blindingly obvious have

been exceedingly difficult for computers.

> cat?

from “Deep Learning for Vision” lecture at CERN by Jon Shlens, Google Research - author of TensorFlow



Machine learning applied everywhere.

* [he |last decade has shown that it we teach computers

to perform a task, they can pertorm exceedingly better.

machine translation speech recognition
face recognition time series analysis
molecular activity prediction image recognition
road hazard detection object detection
optical character recognition motor planning
motor activity planning syntax parsing
language understanding

face recognition for galaxies®



Examples of artificial vision in action

e fine-grain classification

* generalization

e sensible errors

snake

** Trained a model for whole image recognition using Inception-v3 architecture.



w10y model of a neuron: “perceptron”

Simplify the neuron to a sum over weighted inputs
and a nonlinear activation function.

y:f(zwi%‘l'b)

* NO spikes | |
nputs  weights
70
* no recurrence Or feedbaCk * \_;_/L\- wo weighted sum step function
1928-1971 O N
. - P—
VS, * no dynamics or state * EAE =¥
~ o
* no biophysics N
f(2) = max(0, 2)

The perceptron: a probabilistic model for information storage and organization in the brain.
F Rosenblatt (1958)

“During the late 1950s and early 1960s ... Rosenblatt and Minsky
debated on the floors of scientific conferences the value of
biologically inspired computation, Rosenblatt arquing that his neural
networks could do almost anything and Minsky countering that they
could do little.”

Marvin I\/Iinsky Web version of The Quest for Artificial Intelligence by Nils Nilsson, nicely covers Minsky
and Rosenblatt (as well as a lot of other relevant Al material).
1927-2016



http://ai.stanford.edu/~nilsson/QAI/qai.pdf

During the 1960s, neural net researchers employed various methods for changing a
network’s adjustable weights so that the entire network made appropriate output
responses to a set of “training” inputs. For example, Frank Rosenblatt at Cornell
adjusted weight values in the final layer of what he called the three-layer alpha-
perceptron. But what stymied us all was how to change weights in more than one layer
of multilayer networks.... Inventive schemes were tried for making weight changes;
none seemed to work out.

That problem was solved in the mid-1980s by the invention of a technique called “back
propagation” (backprop for short) introduced by David Rumelhart, Geoffrey E.
Hinton, and Ronald J. Williams. The basic idea behind backprop is simple.... In
response to an error in the network’s output, backprop makes small adjustments in all
of the weights so as to reduce that error. It can be regarded as a hill-descending
method — searching for low values of error over the landscape of weights. But rather
than actually trying out all possible small weight changes and deciding on that set of
them that corresponds to the steepest descent downhill, backprop uses calculus to
precompute the best set of weight changes.

THE QUEST FOR
ARTIFICIAL W
INTELLIGENCE ;

A NISTORY OF IDEAS AND ACHIEVEMENTS

From The Quest for Artificial See also THINKING
Intelligence by Nils Nilsson, MACHINES =Y
Chaptel’ 29 Allﬂi;(l:l

INIELLIGENCE
03 ¥ s

NILS J. NILSSON



The computer vision competition: IMAGENET

Large scale academic competition focused on predicting 1000
object classes (~1.2M images).
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Imagenet: A large-scale hierarchical image database
J Deng et al (2009)



History of technigues in ImageNet Challenge

ImageNet 2010

Locality constrained linear coding + SVM NEC & UIUC

Fisher kernel + SVM Xerox Research Center Europe

SIFT features + LI2C Nanyang Technological Institute

SIFT features + k-Nearest Neighbors Laboratoire d'Informatique de Grenoble
Color features + canonical correlation analysis National Institute of Informatics, Tokyo
ImageNet 2011

Compressed Fisher kernel + SVM Xerox Research Center Europe

SIFT bag-of-words + VQ + SVM University of Amsterdam & University of
SIFT + 7 ISI Lab, Tokyo University

ImageNet 2012

Deep convolutional neural network University of Toronto

Discriminatively trained DPMs University of Oxford

Fisher-based SIFT features + SVM ISI Lab, Tokyo University




ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utorontc.ca 1i1lyales.utoronto.ca hinton@es.utorento.ca

Advances in Neural Information Processing Systems 25 (NIPS 2012) [PDF]

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-3 error rates of 37.5%
and 17.0% which is considerably better than the previous statc-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three [ully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating ncurons and a very cfficient GPU implemen-
tation ol the convolution operation. To reduce overlitting in the [ully-connected
layers we employed a recently-developed regulanzation method called “dropoul”
that proved to be very ellective. We also entered a variant of this model in the
[ILSVRC-2012 competition and achieved a winning top-3 test error rate ol 15.3%,
compared Lo 26.2% achieved by the second-best entry.


https://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Deep convolutional neural networks
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ImageNet Classification with Deep Convolutional Neural Networks
A Krizhevsky | Sutskever, G Hinton (2012)

 Multi-layer perceptron trained with back-propagation
are ideas known since the 1980’s.

e The success of deep learning in the past 5 years is
due to more powerful computers (GPUs) and better
code.



Sander Dieleman used a deep learning code to predict Galaxy Zoo nearby galaxy
image classifications with high accuracy, winning the 2014 Kaggle competition
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The Galaxy Zoo 2 decision tree. Reproduced from fig.1 in . . . .
Willett et al. (2013). Krizhevsky-style diagram of the architecture of the best performing network.

Dieleman, Willett, Dambre 2015, Rotation-invariant convolutional neural networks for
galaxy morphology prediction, MNRAS

We present a deep neural network model for galaxy morphology classification which
exploits translational and rotational symmetry. For images with high agreement among
the Galaxy Zoo participants, our model is able to reproduce their consensus with near-

perfect accuracy (>99 per cent) for most questions.


http://benanne.github.io/2014/04/05/galaxy-zoo.html

Marc Huertas-Company used Dieleman’s code to classify CANDELS galaxy images

H-C et al. 2015, Catalog of Visual-like Morphologies in 5 CANDELS Fields Using Deep Learning

In this work, we mimic human perception with deep learning using convolutional neural networks
(ConvNets). The ConvNet is trained to reproduce the CANDELS visual morphological classification
based on the efforts of 65 individual classifiers who contributed to the visual inspection of all of the
galaxies in the GOODS-S field. It was then applied to the other four CANDELS fields. The galaxy
classification data was then released to the astronomical community.

ConvNet
19 ) Fully Connected Layers
s>$~ i - Mig ;k\::
| l’{\j"’;’\ fyw“i % ;E N:E:?r f
— %ﬂwh\éa, ﬂ"”@ >
p——— sph
R 5] 2 |
Ry — 128 max- Taisk
e pooling pooling > — firr
pooling 8x8 e fPS
20x20 ¢
Unc

2048 2048

Configuration of the Convolutional Neural Network used in this paper,
based on the one used by Dieleman et al. (2015) on SDSS galaxies. It
is made of 5 convolutional layers followed by 2 fully connected
perceptron layers.

Following the approach in CANDELS, we
associate five real numbers with each galaxy
corresponding to the frequency at which
expert classifiers flagged a galaxy as having
a bulge, having a disk, presenting an
irregularity, being compact or point-source,
and being unclassifiable. Galaxy images are
interpolated to a fixed size, rotated, and
randomly perturbed before feeding the
network to (i) avoid over-fitting and (ii) reach
a comparable ratio of background versus
galaxy pixels in all images. ConvNets are
able to predict the votes of expert classifiers
with a <10% bias and a ~10% scatter. This

makes the classification almost equivalent to
a visual-based classification. The training
took 10 days on a GPU and the classification
is performed at a rate of 1000 galaxies/hour.

H-C et al. 2016, Mass assembly and morphological transformations since z ~ 3 from CANDELS

We quantify the evolution of star-forming and quiescent galaxies as a function of morphology from z ~ 3 to
the present. Our main results are: 1) At z ~ 2, 80% of the stellar mass density of star-forming galaxies is in

irregular systems. However, by z ~ 0.5, irregular objects only dominate at stellar masses below 109Mo. 2)

Quenching: We confirm that galaxies reaching a stellar mass M ~ 1010-8M¢ tend to quench. Also,
quenching implies the presence of a bulge: the abundance of massive red disks is negligible at all redshifts




Marc Huertas-Company and his group have used deep learning to emulate GALFIT.
The deep learning (convolutional neural net CNN) emulator measurements agree
with with GALFIT about as well as GALFIT run again on the images.

@,
% CNN analyzes ~1000 E
images per second a
O while GALFIT takes Z
2 hours and sometimes —
= is problematic. O
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SIZE GALFIT



Google has supported Marc H-C’s visits to UCSC in summers 2016 and 2017, and his
grad student Fernando Caro’s visit March-August 2017 using deep learning,
CANDELS images, and our galaxy simulations to understand galaxy formation

1.0

Disk

Pmo e
o o
()]

Pmodel
I o
o

|
|
|
|
|
| I\ W || ol
(f Al 1\ /] \ 1AM |
N\
Y 1A I
ll
E NP \
1.0 0.0 3.0

H-band morphology

Z.oom-in on
merger event
atz~1.2

Simulation

log Mdot [Mg/yr]

6 5 4 3 2 1 5 4 3 2 1
z ¥4

Evolution of zoom-in galaxy simulation VELA23-RP. The upper three panels show the probabilities
that the galaxy is best fit by GALFIT as a single-Sersic Bulge or Disk, or instead as a double Sersic
Bulge+Disk, based on classifications by a deep learning code trained using synthetic images.
(Note that these probabilities do not need to sum to unity, since they are independent.)
Classifications are plotted for 19 different orientations, with the medians plotted as heavy lines.



We want to give DL mock images and spectra + simulation metadata
(recent major and minor mergers, counter-rotating gas flows, gas

inflows, ...) as a training set and see if DL can successfully predict
the key phenomena from the images or the images + spectra.

For example, in the best cases of S/N and resolution, this might help
discriminate between different causes of compaction. The images +
spectra can also help discriminate between shear caused by
mergers vs. rotation.

Greg Snyder and Raymond Simons have created a software pipeline
to generate mock images and IFU data cubes from all the VELA
simulations, with resolution appropriate for ground-based, HST, and
JWST. It will work with essentially all current hydro simulations.

Avishai Dekel’s Hebrew University group, including Santi Roca-
Fabrege and Sharon Lapiner, Nir Mandelker at Yale, and others at
UCSC are analyzing VELA and other simulations to create the
simulation metadata set.



We want to give DL mock images and spectra + simulation metadata
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Credit: Greg Snyder & Raymond Simons




HUDF S/N 27 mag/(arc sec)? VELAZ22-RP z = 4.00
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HUDF S/N VELA22-RP z = 3.00
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HUDF S/N VELA22-RP z =212
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Camera 10 (fixed in simulation coordinates)
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young stars
(age < 20 Myr)

10 kpc



Another UCSC deep learning project: better galaxy environment estimates

Joel Primack, Dave Koo, Doug Hellinger, UCSC grad students James Kakos, Dominic Pasquali

Images at various wavelengths (=>photometric redshifts, photo-z’s) are much more plentiful than
spectroscopic redshifts. How can we best combine a few spectroscopic z’s with many photo-z’s
to estimate the environment of each galaxy? A preprint by Nicholas Tejos, Aldo Rodriguez-
Puebla, and Joel Primack introduces a method (“SORT”) to do this. Bryce Menard and
collaborators have proposed a different approach. Can deep learning do better?
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Another UCSC deep learning project: damped Lya (DLA) systems in SDSS spectra

Input

-

UCSC grad student David Park, Shawfeng Dong, J. Xavier Prochaska, Zheng Cai

DLA systems seen in quasar spectra, corresponding to at least 2x102° hydrogen atoms/cm?,
represent most of the neutral hydrogen in the universe at redshifts z=2 to 4. About 7000 DLAs
were identified by astronomers in about 100,000 quasar spectra. The additional 270,000
sightlines that recently became available from the Sloan Digital Sky Survey were scanned for
DLAs by a deep learning code, and the resulting DLA catalog will be made publicly available.
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Astro data and computation are increasing exponentially
This will be challenging!

1,000,000

Big Data Changing

Sloan Digital Sky Survey (SDSS) 2008 Computers
2.5 Terapixels of images A
40 TB raw data ™120 TB processed
35 TB catalogs o

Mikulski Archive for Space Telescopes

185 TB of images (MAST) 2013
25 TB/year ingest rate

>100 TB/year retrieval rate

Shortfall
100x
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& GPUs |
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Large Synoptic Survey Telescope (LSST)
15 TB per night for 10 years ~2022  Increasingly inhomogeneous
100 PB image archive computers are harder to program!
20 PB final database catalog We need computational scientists

Square Kilometer Array (SKA) ~2024 and engineers and new compilers

1 EB per day (~ internet raffic today) o7 SRCE S0 AR
100 PFlop/s processing power

~1 EB processed data/year load balancing and fault tolerance.



2017 Santa Cruz Galaxy Workshop

University of California Santa Cruz
Augcust 7-11, 2017

Deep Learnmg for Galaxies (a progress report)
Joel Primack

A deep learning code accurately predicted Galaxy Zoo galaxy image classifications,
winning 2014 Kaggle competition

Marc Huertas-Company used deep learning to classify CANDELS galaxy images

H-C et al. 2015, Catalog of Visual-like Morphologies in 5 CANDELS Fields Using Deep Learning
H-C et al. 2016, Mass assembly and morphological transformations since z ~ 3 from CANDELS
Dimauro, H-C et al. 2017, Bulge and disk evolution in CANDELS — H-C’s talk on Monday

Marc Huertas-Company and his group use DL to emulate GALFIT, etc.

Google supports Marc H-C’s visits to UCSC Summer 2016 and 2017, and his grad
student Fernando Caro’s visit March-August 2017, using deep learning, HST and
JWST images and spectra, and galaxy simulations to understand galaxy formation

Training set = mock images (or mock images plus spectra) plus simulation metadata, to see
whether deep learning can successfully determine causes of morphological transformations

Better galaxy environment estimates with mostly photo-z’s + some spec-z’s

Another UCSC deep learning project: finding damped Lya systems in SDSS spectra



