Nuclear reactions in the early universe II

Mark Paris – Los Alamos Nat'l Lab Theoretical Division ISSAC 2014 UCSD

Organization

Nuclear reactions in the early universe

- Lectures (Paris/E. Grohs)
 - I. Overview of cosmology/Kinetic theory/Big bang nucleosynthesis (BBN)
 - II. Scattering & reaction formalism/Neutrino energy transport
- Workshop sessions (E. Grohs/Paris)
 - BBN exercises: compute Nuclear Statistical Equilibrium/electron fraction
 - II. Compute primordial abundances vs $\Omega_b h^2$: code parallelization
- Lecture notes
 - □ Will be available online (URL TBA)

Outline

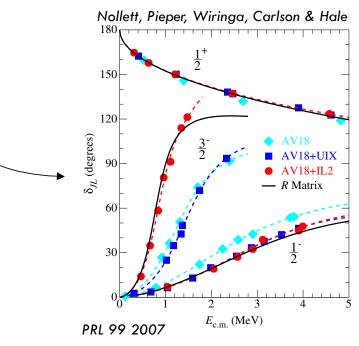
<u>Lecture I</u>

Overview

- Cosmological dynamics in GR
- Big bang nucleosynthesis (BBN)
- Boltzmann equation
 - Flat & curved spacetime

<u>Lecture II</u>

- Unitary reaction network (URN) of light nuclei
- Neutrino energy transport
- Evan Grohs: observations of primordial abundances


Light nuclear reaction program @ LANL

Motivation

- □ Data sets: σ, σ(θ), $A_i(\theta)$, $C_{i,j}$, $K_i^{i'}$, $\Sigma(\gamma)$,... → T matrix → resonance spectrum
- Unitary parametrization of compound nuclear system
- Applications: astrophysical, nuclear security, inertial confinement fusion, criticality safety, charge-particle transport, nuclear data (ENDF, ENSDF)

Ab initio Variational MC; Green's function MC GFMC [PRL 99, 022502 (2007)] n-⁴He phase shifts comparison GFMC/R-matrix challenge: multichannel eg. n α → n α, n α → dt & dt→dt Phenomenology

- R matrix (2→2 body scatt/reacs)
- 3-body channels being incorporated

EDA Analyses of Light Systems

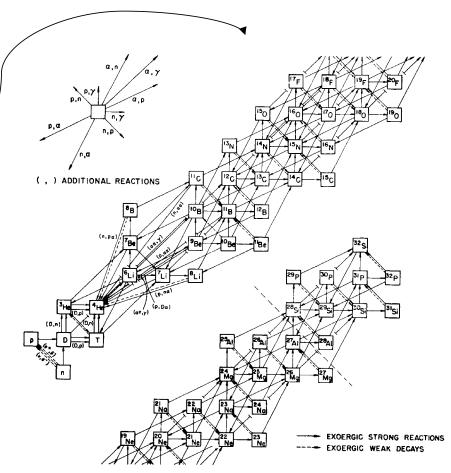
Α	System	Channels	Energy Range (MeV)
2	N-N	p+p; n+p, γ+d	0-30 0-40
3	N-d	p+d; n+d	0-4
	⁴ H ⁴ Li	n+t p+ ³ He	0-20
4	⁴ He	p+t n+ ³ He d+d	0-11 0-10 0-10
5	⁵ He	n+α d+t ⁵ He+γ	0-28 0-10
	⁵ Li	p+α d+ ³ He	0-24 0-1.4


Analyses of Light Systems, Cont.

Α	System (Channels)			
6	⁶ He (⁵ He+n, t+t); ⁶ Li (d+ ⁴ He, t+ ³ He); ⁶ Be (⁵ Li+p, ³ He+ ³ He)			
7	⁷ Li (t+ ⁴ He, n+ ⁶ Li); ⁷ Be (γ + ⁷ Be, ³ He+ ⁴ He, p+ ⁶ Li)			
8	⁸ Be (⁴ He+ ⁴ He, p+ ⁷ Li, n+ ⁷ Be, p+ ⁷ Li [*] , n+ ⁷ Be [*] , d+ ⁶ Li)			
9	⁹ Be (⁸ Be+n, d+ ⁷ Li, t+ ⁶ Li); ⁹ B (γ+ ⁹ B, ⁸ Be+p, d+ ⁷ Be, ³ He+ ⁶ Li)			
10	¹⁰ Be (n+ ⁹ Be, ⁶ He+ α , ⁸ Be+nn, t+ ⁷ Li); ¹⁰ B (α + ⁶ Li, p+ ⁹ Be, ³ He+ ⁷ Li)			
11	¹¹ B (α + ⁷ Li, α + ⁷ Li [*] , ⁸ Be+t, n+ ¹⁰ B); ¹¹ C (α + ⁷ Be, p+ ¹⁰ B)			
12	¹² C (⁸ Be+ α , p+ ¹¹ B)			
13	¹³ C (n+ ¹² C, n+ ¹² C*)			
14	¹⁴ C (n+ ¹³ C)			
15	¹⁵ N (p+ ¹⁴ C, n+ ¹⁴ N, α + ¹¹ B)			
16	¹⁶ Ο (γ+ ¹⁶ Ο, α+ ¹² C)			
17	¹⁷ O (n+ ¹⁶ O, α+ ¹³ C)			
18	¹⁸ Ne (p+ ¹⁷ F, p+ ¹⁷ F [*] , α+ ¹⁴ O)			

26 tabulated analyses

^{13,14}C system analyses: σ_{T} (b) vs. E_{n} (MeV)


Unitary, self-consistent primordial nucleosynthesis

- State of standard big-bang nucleosynthesis (BBN)
 - □ d & ⁴He abundances: signature success cosmology+nucl astro+astroparticle
 - but there's at least one Lithium (⁷Li) Problem [⁶Li too? See: Lind et.al. 2013]
 - coming precision observations of d, ⁴He, η , N_{eff} demand new BBN capabilities
 - resolution of ⁷Li problem:
 - observational/stellar astrophysics?
 - ⁷Li controversial anomaly: nuclear physics solution?
 - new physics?
- Advance BBN as a tool for precision cosmology
 - incorporate unitarity into strong & electroweak interactions (next slide)
 - couple unitary reaction network (URN) to full Boltzmann transport code
 - neutrino energy distribution function evolution/transport code
 - fully coupled to nuclear reaction network
 - calculate light primordial element abundance for non-standard BBN
 - **active-sterile** ν mixing
 - massive particle out-of-equilibrium decays→energetic active SM particles
 - Produce tools/codes for nuc-astro-particle community: test new physics w/BBN
 - existing codes are based on Wagoner's (1969) code

Nuclear reaction network

- Single-process (non-unitary) analysis
 - $\sigma_{\alpha\beta}(E) \pm \delta \sigma_{\alpha\beta}(E)$ from expt
 - **a** fit form (non-res+narrow res) to $\sigma_{\alpha\beta}(E)$
 - compute $\langle \sigma v \rangle(T) \rightarrow$ reactivity \rightarrow network -
 - <u>NB</u>: norm. systematics can be large
 - ¹⁷O case (below)
- Multi-channel (unitary) analysis
 - Construct unitary parametrization
 - R-matrix (Wigner-Eisenbud '47)
 - simultaneous fit of unpolarized/pol'd scatt/reac data→determine T(or S)matrix
 - determines a unitary reaction network (URN) for analyzed compound systems

Wagoner ApJSuppl '69

Boltzmann eq., cross sections, thermal averages

- Boltzmann equation
 - Toy model, single reaction $\rightarrow \frac{1}{a^3} \frac{d(n_1 a^3)}{dt} = -\langle \sigma v \rangle \left\{ n_1 n_2 n_3 n_4 \frac{n_1^{(0)} n_2^{(0)}}{n_2^{(0)} n_1^{(0)}} \right\}$
 - Full code has 144 reactions
 - Thermal (Maxwellian) averaged flux(v)*cross section $\langle \sigma v \rangle = \left(\frac{8}{\pi \mu}\right)^{1/2} \left(\frac{1}{kT}\right)^{3/2} \int_0^\infty dE \, E \, \sigma_{12 \to 34}(E) \, e^{-E/kT}$
- □ Energy dependent, angle-integrated cross section is determined from data; Ranking worst → best:
 - Guess: sometimes necessary when no data/calc. (e.g. TALYS)
 - Parametrize resonance data: undesirable since res/non-res related by unitarity; results in model dependent reaction cross section
 - Fit to experimental cross section: can be OK; normalization often problematic; subject to sometimes large systematic uncertainty
 - Unitary theory: multichannel R-matrix: sure-fire; downside: need multichannel data

Observables from transition (T) matrix

□ Scattering matrix: QM amplitude for (i)nitial \rightarrow (f)inal

 $\langle \mathbf{f}|S(E)|\mathbf{i}\rangle = \delta_{fi} + 2iT_{fi}(E)$

- □ All observables ~ T matrix bilinears
 - unpolarized differential cross section

$$\frac{d\sigma_{fi}}{d\Omega} = \frac{4\pi}{k^2} \frac{1}{N_{spins,i}} \sum_{spins,f} |T_{fi}|^2$$

polarization asymmetry

$$P = \frac{\sigma_{\uparrow\uparrow} - \sigma_{\downarrow\uparrow}}{\sigma_{\uparrow\uparrow} + \sigma_{\downarrow\uparrow}}$$

 \Box Diff cross section \rightarrow int'd cross section \rightarrow thermal averaged

$$\sigma(E) = \int d\Omega \, \frac{d\sigma}{d\Omega} \to \langle \sigma v \rangle$$

Unitarity: consequences on T matrix

$$\begin{cases} \delta_{fi} &= \sum_{n} S_{fn}^{\dagger} S_{ni} \\ S_{fi} &= \delta_{fi} + 2i\rho_{f} T_{fi} \\ \rho_{n} &= \delta(H_{0} - E_{n}) \end{cases} \qquad T_{fi} - T_{fi}^{\dagger} = 2i\sum_{n} T_{fn}^{\dagger}\rho_{n}T_{ni} \leftarrow T_{fn}^{\dagger} = 2i\sum_{n} T_{fn}^{\dagger}\rho_{n}T_{n$$

NB: unitarity implies optical theorem $\sigma_{tot} = \frac{4\pi}{k} \text{Im } f(0)$; but not only the O.T.

Implications of unitarity constraint on transition matrix

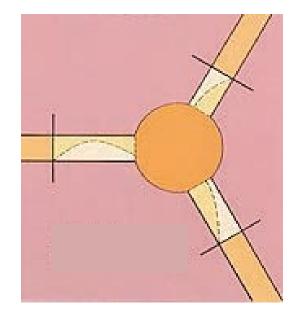
- 1. Doesn't uniquely determine T_{ii}; highly restrictive, however Elastic: Im $T_{11}^{-1} = -\rho_1$ (assuming T & P invariance) Multichannel: Im $\mathbf{T}^{-1} = -\boldsymbol{\rho}$
- 2. Unitarity violating transformations

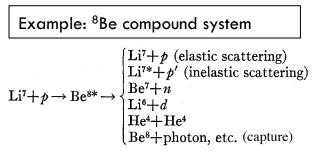
 - cannot scale **any** set: $T_{ij} \rightarrow \alpha_{ij}T_{ij}$ $\alpha_{ij} \in \mathbb{R}$ cannot rotate **any** set: $T_{ij} \rightarrow e^{i\theta_{ij}}T_{ij}$ $\theta_{ij} \in \mathbb{R}$
 - \star consequence of linear 'LHS' \propto quadratic 'RHS'
- 3. Unitary parametrizations constrain the experimental data itself
 - ★ normalization, in particular
 - \star case studies: ¹⁷O & ⁹B compound system

Most important feature: linear \sim quadratic

Basics of R-matrix (data ⇒ amplitudes)

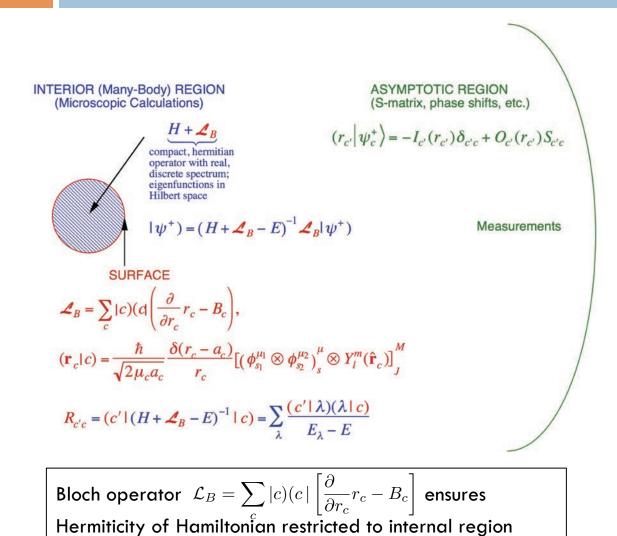
Assumptions (cf. Lane & Thomas RMP '58)


- a) Non-relativistic QM (L&T58); LANL-EDA uses rel.
- b) Two-body channels only ('c'); aux. spectra code
- c) Conservation of N, Z
- d) Finite radius a_c beyond $V_{pol} \approx 0$; sharp boundaries


□ Separated pairs, "channels"

- A nucleons \rightarrow (A₁,A₂)
- $c = \{\alpha s_1 m_1 s_2 m_2\} \to \{\alpha (s_1 s_2) s m_s \ell m_\ell\} \to \{\alpha (s_1 s_2) s \ell, JM\}$
- Assume $a_c = a_{\alpha} \rightarrow many c$ have same channel in configuration space

Channel surface

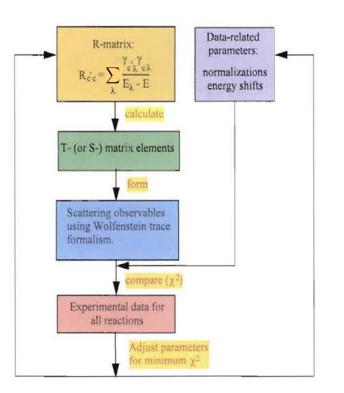

- Consider configuration space of 3A dimensions
- Set of points: $\cup_c r_{\alpha(c)} = a_{\alpha(c)}$
- Surfaces coincide but assumed to have negl. prob.
- Channels are cylinders normal to channel surf.

R-matrix formalism

- R-matrix theory: unitary, multichannel parametrization of (not just resonance) data
- Interior/Exterior regions
 - Interior: strong interactions
 - Exterior: Coulomb/nonpolarizing interactions
 - Channel surface

$$S_c: r_c = a_c \quad S = \sum_c S_c$$

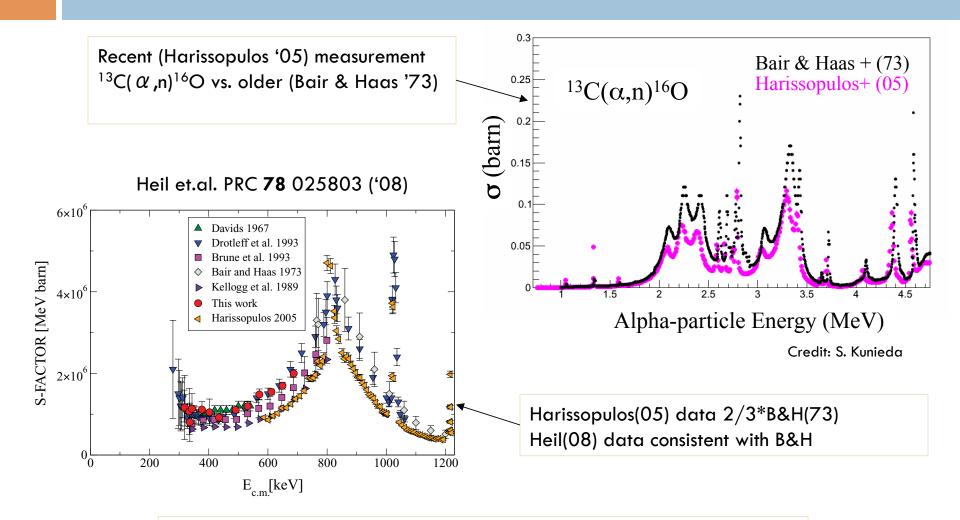
- R-matrix elements
 - Projections on channel surface functions $(\mathbf{r}_c|c)$ of Green's function


$$G_B = [H + \mathcal{L}_B - E]^{-1}$$

Boundary conditions $B_c = \frac{1}{u_c(a_c)} \frac{du_c}{dr_c} \Big|_{r_c = a_c}$

R-matrix implementation in EDA

EDA = Energy Dependent Analysis • Adjust $E_{\lambda} \& \gamma_{c\lambda}$ Any number of two-body channels Arbitrary spins, masses, charges (zero mass) □Scattering observables Wolfenstein trace formalism □Data Normalization Energy shifts Energy resolution/spread □Fit (rank-1 var. metric) solution $\chi_{EDA}^2 = \sum_{i} \left[\frac{nX_i(\mathbf{p}) - R_i}{\delta R_i} \right]^2 + \left[\frac{nS - 1}{\delta S/S} \right]^2$ Covariance determined

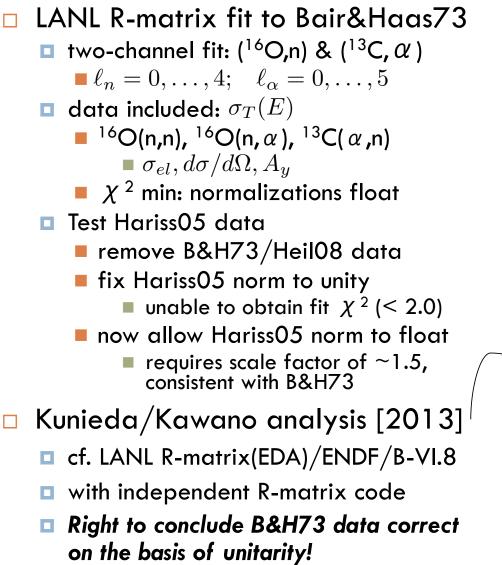


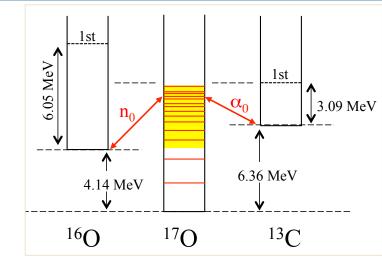
¹⁷O analysis configuration

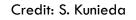
	Channel	a _c (fm)	I _{max}	
	n+ ¹⁶ O	4.3	4	
	α+ ¹³ C	5.4	5	
Reaction	Energies (MeV)	# dat point		Data types
¹⁶ O(n,n) ¹⁶ O	$E_n = 0 - 7$	271	8 o	$\sigma_{T}, \sigma(\theta), P_{n}(\theta)$
¹⁶ O(n,α) ¹³ C	$E_n = 2.35 - 3$	5 85	0 σ	$_{int}$, $\sigma(\theta)$, $A_{n}(\theta)$
¹³ C(α,n) ¹⁶ O	$E_{\alpha} = 0 - 5.4$	87	4	σ_{int}
$^{13}C(\alpha,\alpha)^{13}C$	$E_{\alpha} = 2 - 5.7$	129	6	σ(θ)
total		573	8	8

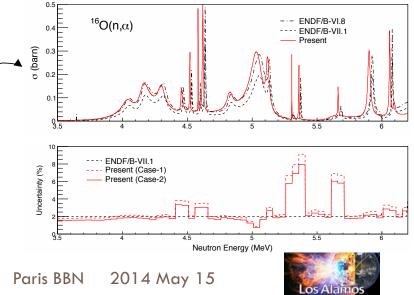
¹⁷O compound system: experimental status

Tempting to conclude that B&H73 was right all along!

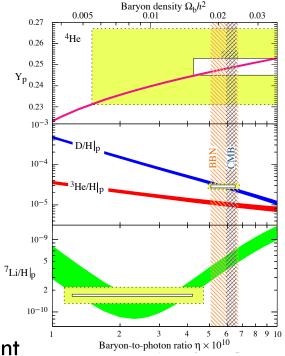

¹⁷O compound system: experimental status




Tempting to conclude that B&H73 was right all along!

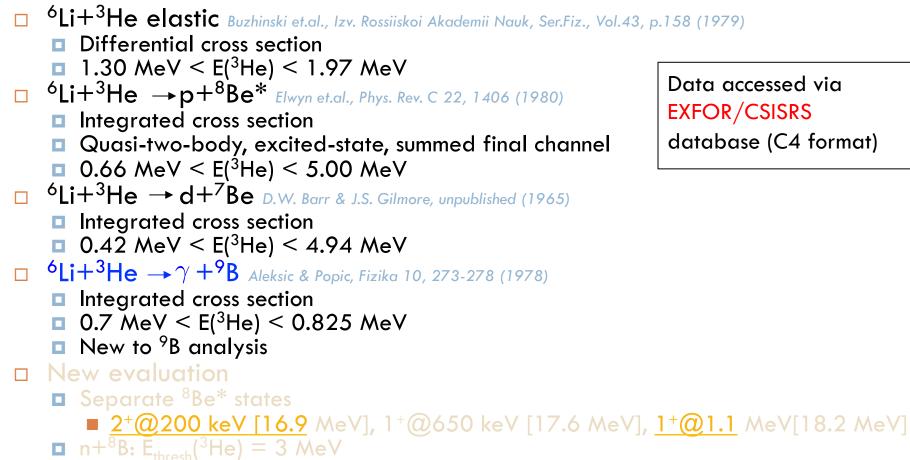


R-matrix analyses support B&H73/Heil08


Toward a unitary reaction network for BBN

- Can unitarity play a role in precision BBN?
- D,⁴He abund. agree with theo/expl uncertainties
- At η_{wmap} (CMB) ⁷Li/H|_{BBN} ~ (2.2-4.2)*⁷Li/H|_{halo*}
- Discrepancy ~ 4.5–5.5 σ \rightarrow the "Li problem"

Resonant destruction ⁷Li

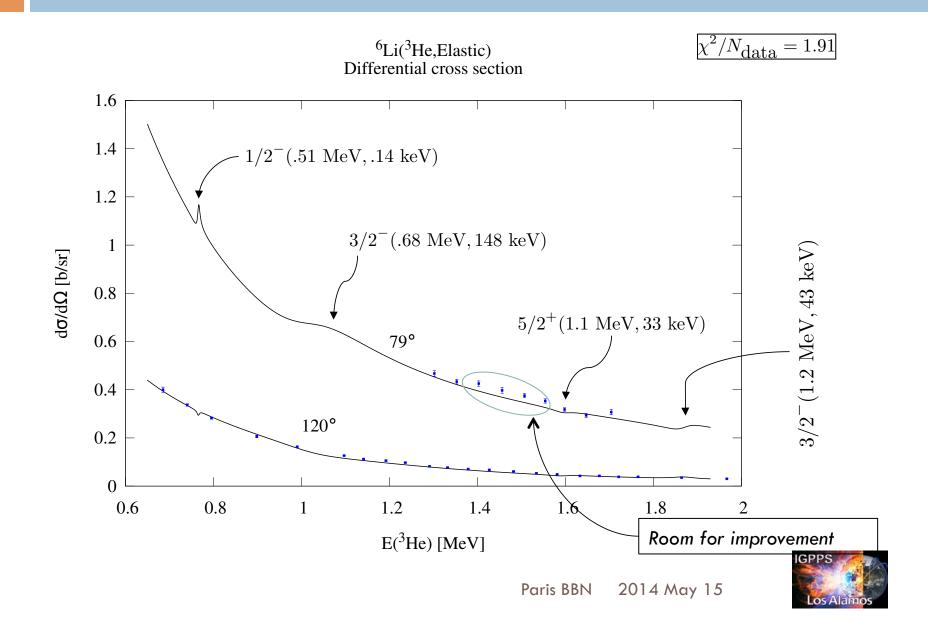

- Prod. mass 7 "well understood"; destruction not
- Cyburt & Pospelov arXiv:0906.4373; IJMPE, 21(2012)
 - **Proof** $^{7}Be(d,p) \alpha \alpha \& ^{7}Be(d, \gamma)^{9}B$ resonant enhancement
 - Identify ⁹B E_{5/2+}~16.7 MeV~E_{thr}(d+⁷Be)+200 keV
 - Near threshold
 - $(E_r, \Gamma_d) \approx (170 220, 10 40)$ keV solve Li problem
- 'Large' widths
 - Conclude "large channel radius" required

<u>NB</u>: both approaches assume validity of TUNL-NDG tables

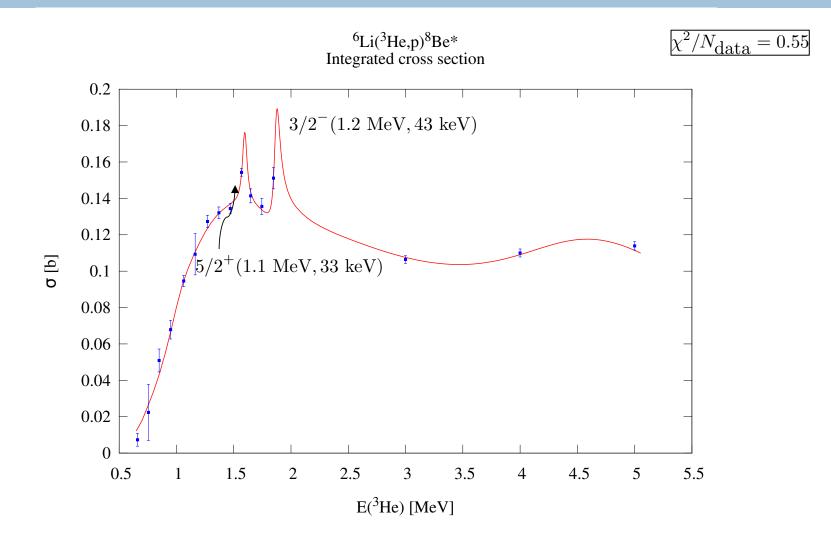
⁹B analysis: included data

Simultaneous analysis with ⁹Be mirror system

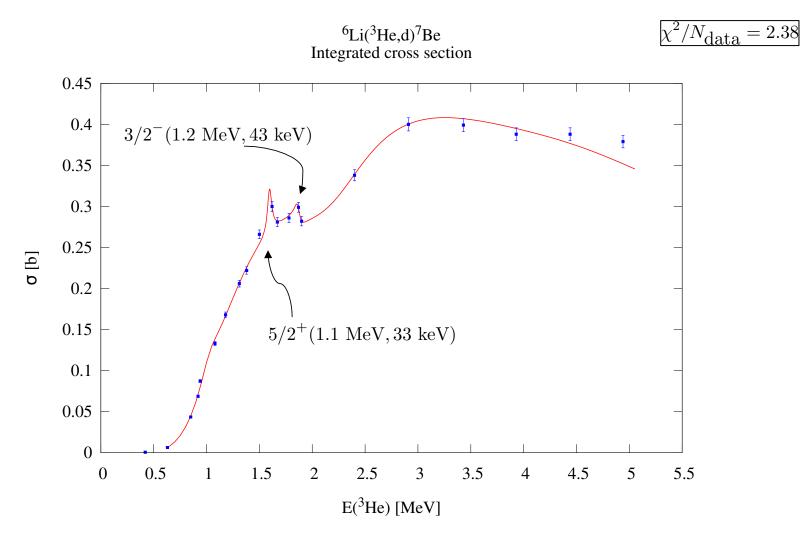
Data accessed via EXFOR/CSISRS database (C4 format)



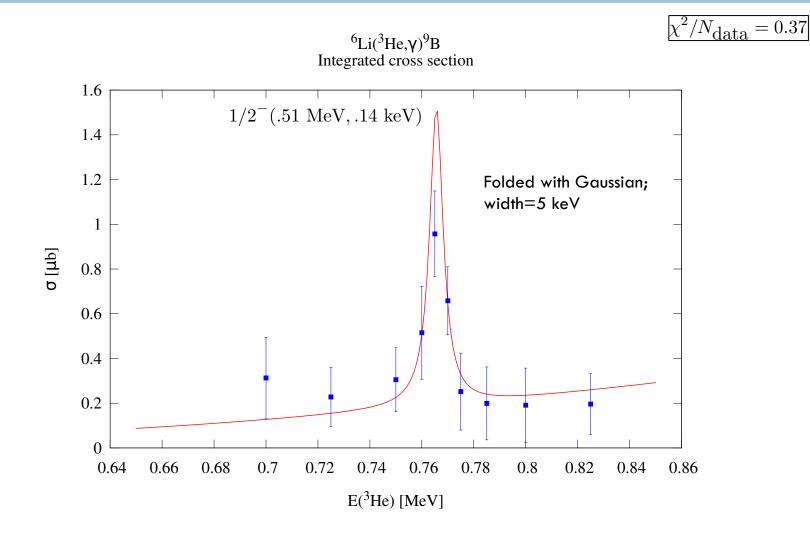
R-matrix configuration in EDA code


ladronic channels (in <mark>blue,</mark> not included)									
$A_1 A_2^{\pi}$	$^{3}\mathrm{He^{6}Li^{+}(1)}$		$p^8\mathrm{Be}^{*+}$ (2)			$d^7\mathrm{Be^-}(3)$			
ℓ S	$\frac{3}{2}$	$\frac{1}{2}$		$\frac{5}{2}$	$\frac{3}{2}$		$\frac{5}{2}$	$\frac{3}{2}$	$\frac{1}{2}$
0	${}^{4}S_{3/2}$	$^{2}S_{1/2}$	6	${}^{5}S_{5/2}$	$^{4}S_{3/2}$		${}^{6}S_{5/2}$	${}^{4}S_{3/2}$	${}^{2}S_{1/2}$
1	${}^4P_{5/2,3/2,1/2}$		${}^{6}P_{7/2,5/}$	$^{\prime}{}_{2,3/2}$ $^{4}P_{5/}$	2,3/2,1/2		${}^{6}P_{7/2,5/2,3/2}$	${}^{4}P_{5/2,3/2,1/2}$	
2	${}^{4}D_{7/2,5/2,3/2,1/2}$	$^{2}D_{5/2,3/2}$				${}^{6}D_{9/2,7}$	/2,5/2,3/2,1/2	${}^{4}D_{7/2,5/2,3/2,1/2}$	${}^{2}D_{5/2,3/2}$
E _{thr} (C	M, MeV) 16	5.6		16.7				16.5	
Elect	romagnetic c	hannel:	γ –	$+^9B \rightarrow E$	$^{3/2}_{1}, M$	$\frac{5/2}{1}, I$	$M_1^{3/2}, M_1^1$	$^{/2}, E_1^{5/2}, E_1^1$	/2
state n	odel space: umber;	1 2 3 4 5	1 4s 3/2 1 4d 3/2 1 2d 3/2 2 4s 3/2 3 6p 3/2	7.5000000 7.5000000 7.5000000 5.5000000 7.0000000	0f 0f 0f	20 21 22 23 24	1 4p 1/2 1 2p 1/2 2 4p 1/2 3 2s 1/2 4 M1 1/2	7.50000000f 7.50000000f 5.50000000f 7.00000000f 50.00000000f	
channe LS; J; c radius	channel	5 6 7 8 9	3 4p 3/2 3 2p 3/2 4 E1 3/2 1 4p 5/2	7.0000000 7.0000000 50.0000000 7.5000000	0f 0f 0f	25 26 27 28	1 4d 7/2 3 6p 7/2 1 4d 5/2 1 2d 5/2	7.50000000f 7.00000000f 7.50000000f 7.50000000f	
100103	<u> </u>	10 11 12 13 14 15 16	2 6p 5/2 2 4p 5/2 3 6s 5/2 4 M1 5/2 1 4p 3/2 1 2p 3/2 2 6p 3/2	5.5000000 5.5000000 7.0000000 50.0000000 7.5000000 7.5000000 5.5000000	0f 0f 0f 0f 0f	29 30 31 32 33 34 35	2 6s 5/2 3 6p 5/2 3 4p 5/2 4 E1 5/2 1 4d 1/2 1 2s 1/2 3 4p 1/2	5.50000000f 7.00000000f 50.00000000f 7.50000000f 7.50000000f 7.00000000f	
		17 18 19	2 4p 3/2 3 4s 3/2 4 M1 3/2	5.5000000 7.0000000 50.0000000	0f	36 37 38	3 2p 1/2 4 E1 1/2 2 6p 7/2	7.00000000f 50.00000000f 5.50000000f	IGPPS

Observable fit: ³He+⁶Li elastic DCS



Observable fit: ⁶Li(³He,p)⁸Be* integrated x-sec



Observable fit: ⁶Li(³He,d)⁷Be integrated x-sec

Observable fit: ${}^{6}Li({}^{3}He, \gamma){}^{9}B$ integrated x-sec

IGPPS Los Alamos

⁹B analysis result: resonance structure

Ex(MeV)	Jpi	Gamma(keV)	Er(MeV)	ImEr(MeV)	E(3He)	Strength
16.46539	1/2-	768.46	1369	-0.3842	-0.2054	0.06 weak
17.11317	1/2-	0.14	0.5109	-0.6771E-04	0.7664	1.00 strong
17.20115	5/2-	871.63	0.5989	-0.4358	0.8984	0.40 weak
17.28086	3/2-	147.78	0.6785	-0.0739	1.0178	0.77 strong
17.66538	5/2+	33.33	1.0631	-0.0167	1.5947	0.98 strong
17.83619	7/2+	2036.21	1.2339	-1.0181	1.8509	0.15 weak
17.84773	3/2-	42.52	1.2454	-0.0213	1.8681	0.97 strong
18.04821	3/2+	767.11	1.4459	-0.3836	2.1689	0.54 weak
18.42292	1/2+	5446.32	1.8206	-2.7232	2.7309	0.03 weak
18.67716	1/2-	10278.41	2.0749	-5.1392	3.1124	0.15 weak
19.60923	3/2-	1478.22	3.0069	-0.7391	4.5104	0.52 weak

TUNL-NDG/ENSDF	$E_{\rm x}$ ^a (MeV	/ keV)	$J^{\pi}; T$	$\Gamma_{ m c\ m}$ ((keV)	Decay
parameters	16 024	25	$T = \left(\frac{1}{2}\right)$	180	16	
	16 71	100 $^{\rm h}$	$(\frac{5}{2}^+); (\frac{1}{2})$			
	17 076	4	$\frac{1}{2}^{-}; \frac{3}{2}$	22	5	$(\gamma, {}^{3}\text{He})$
	17 190	25		120	40	p, d, ³ He
NB: no strong resonance seen	17 54	$100\ ^{\rm h~i}$	$(\frac{7}{2}^+); (\frac{1}{2})$			
~100 keV of ³ He+ ⁶ Li threshold	$17\ 637$	$10^{\rm \ i}$		71	8	p, d, ³ He, α

Summary

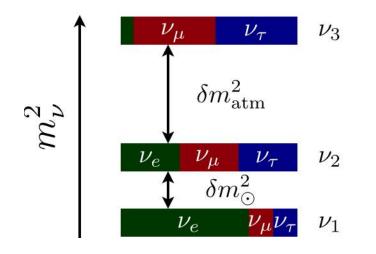
- Provided overview of current work in the LANL light nuclear reaction program
- Emphasize the utility of multichannel, unitary parametrization of light nuc data
 - □ ¹⁷O norm issue: are Bair & Haas '73 data conclusive?
 - □ ⁹B resonance spectrum:
 - □ no resonances in ⁹B that reside within \sim 200 (\sim 100) keV of the d+⁷Be (³He+⁶Li) threshold with 'large' widths 10—40 keV
 - □ Appears to rule out scenarios considered by Cyburt & Pospelov (2009) that low-lying, robust resonance in ⁹B could explain the "Li problem"

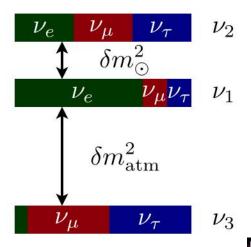
End Lecture II

BSMs scenarios

- New particles: WIMPs, Axion, SUSY, ...
- □ GR modifications: new propagating DsOF; scalar-tensor
- Modifications of Cosmological SM: non-zero v chem. pot.; nonequil. phenomena
- Variation of fundamental couplings
- Cosmic variance
- Neutrino sector
 - solar, atmospheric & reactor neutrinos oscillation experiment prove at least two neutrinos have mass
 - □ "sterile neutrinos": mass → neutrinos have left- & right-hand spin states
 - only left-hand neutrinos interact in SM
 - Massless neutrinos (recall)
 - have only one spin state

Neutrino Mass: what we know and don't know


We know the mass-squared differences: -


$$\begin{cases} \delta m_{\odot}^2 \approx 7.6 \times 10^{-5} \,\mathrm{eV}^2 \\ \delta m_{\mathrm{atm}}^2 \approx 2.4 \times 10^{-3} \,\mathrm{eV}^2 \end{cases}$$

e.g., $\delta m_{21}^2 \equiv m_2^2 - m_1^2$

We do not know the absolute masses or the mass hierarchy:

normal mass hierarchy inverted mass hierarchy

Neutrino mass mixing 101

Take-away message from experiments: "neutrinos have mass"

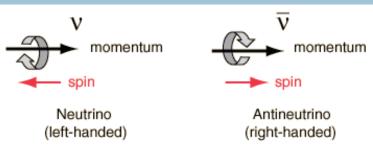
 $\frac{\pi}{4}$

- neutrino flavor eigenstates
 - interact via left-hand (L) components $\bar{\psi}_e \gamma_\mu \frac{1}{2} (1 \gamma_5) \psi_{\nu_e} = \bar{\psi}_{e,L} \gamma_\mu \psi_{e,L}$
 - Mass term, however, mixes L & R:

$$|\nu_e\rangle, |\nu_\mu\rangle, |\nu_\tau\rangle$$

$$\bar{\psi}_e \psi_e = \bar{\psi}_{e,R} \psi_{e,L} + \bar{\psi}_{e,L} \psi_{e,R}$$

Mass mixing matrix


- Pontecorvo-Maki-Nakagawa-Sakata
- neutrino flavor oscillation: confirmed!

Sterile* neutrinos

- What are they?
 - Related to right-handed components
- Wherefore?
 - Mass > right-handed neutrinos > must exist by Lorentz invariance
 - but may have mass modified by interactions
 - Non-interacting(?!): only example of particles that interact solely via GR
 - Interactions → necessarily beyond SM physics
- What (if anything) do they do?
 - **\square** perhaps they mix with active (e, μ , τ) neutrinos?
 - then they're not really "sterile"
- □ Why would we want (need?) them?
 - Ieptogenesis; baryogenesis
 - BBN & N_{eff}

 $\begin{aligned} |\nu_e\rangle &= \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle \\ |\nu_s\rangle &= -\sin\theta |\nu_1\rangle + \cos\theta |\nu_2\rangle \end{aligned}$

Hints for light sterile neutrinos?

- □ mini-BooNE
 - **neutrino oscillation experiment** $\nu_e \rightarrow \nu_s \rightarrow \nu_\mu$
 - appearance with $\delta m^2 \sim 1 \ {\rm eV}^2$
 - result inconsistent with flavor oscillation alone
- Neutrino reactor anomaly
 - 3σ deficit neutrinos detected in short-baseline (<100m) reactor ν experiments
 - $\bar{\nu}_e$ deficit from $\bar{\nu}_e \to \bar{\nu}_s$ (???) a disappearance experiment
 - A. Hayes et al. (2013) find "large corrections"
- Extra radiation at photon-decoupling (Neff) ??
 - CMB observations (PolarBear, ACT, SPT, Planck, CMBPol,...)
 - 'extra' RED could reconcile H_0 and σ_8 inferred from CMB and astronomical observation

Dark radiation

- □ γ -decoupling (last scattering) T ~ 0.2 eV (z~1000)
- N_{eff}: "effective number of neutrino degrees of freedom"
 - A misnomer; it refers to any/all relativistic particles at decoupling
 - Baby' formula: $\rho_{\rm rad} = 2 \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right] \frac{\pi^2}{30} T_{\gamma}^4$
 - We've done this better...
- $\Box \text{ CSM+SMPP} \rightarrow \text{predicts } N_{\text{eff}} = 3.046 \text{ [Dicus et. al. '83; Dolgov, Hansen, Semikoz '97, '99; Gnedin² '98,...]}$
 - annihilation of neutrinos-antineutrinos at weak decoupling
 - QED corrections
- Measurements
 - WMAP9 (2012): 3.26(35); Planck (2013): 3.30(50); ACT(2013):
 2.79(56); SPT-SZ (2012): 3.71(35)
- □ Sterile neutrinos can affect the physics of dark radiation

CMB as a probe of steriles: caveats

- Sterile neutrinos can decay out-of-equilibrium
 - "dilution": steriles are "sub-weakly" interacting
 - non-thermal energy spectra/number densities
- Care must be applied when
 - computing N_{eff}: non-equilibrium effects; relativistic vs. non-relativistic kinematics
 - determining N_{eff} and Y_P (mass fraction ⁴He)
 - current Planck collab. procedure is inconsistent w.r.t. N_{eff} and Y_P
 - in preparation: "Neutrino physics in the era of precision cosmology"
- neutron/proton ratio (and therefore ⁴He)
 - competing weak reaction rates determine Y_P(⁴He)
 - very sensitive to neutrino energy spectra

 $\nu_e + n \leftrightarrow p + e^-$

 $\bar{\nu}_e + p \leftrightarrow n + e^+$

 $n \leftrightarrow p + e^- + \bar{\nu}_e$

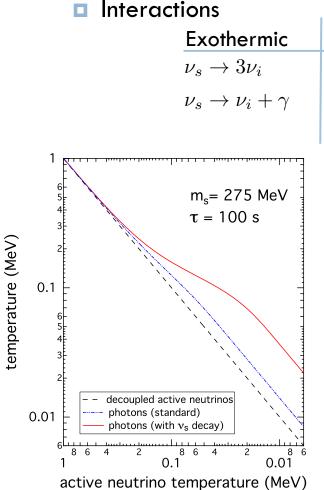
Dilution physics (I)

- Consider the presence of ν_s
 - heavy (~100 MeV), unstable (~10 s)
- Thermal effects
 - Assume interaction of steriles sufficiently strong at T~few GeV to maintain thermal equilibrium with e, ν, γ,...
 - Further, the sterile decouples at T~few MeV
 - assume relativistic kinematics throughout
 - proper entropy is conserved: $s a^3 = constant$ (FLRW)
 - sterile neutrino temperature distribution cooled or "diluted"

$$\frac{T_{\nu_s}(a_{wdc})}{T_{\gamma}(a_{wdc})} = \left(\frac{g_*(a_{wdc})}{g_*(a_{\nu_sdc})}\right)^{1/3} = \left(\frac{10.75}{61.75}\right)^{1/3} \approx \frac{1}{1.8}$$

number density comparable to photons (since lifetime chosen 10's secs)

F


• n(
$$\nu_s$$
) ~ 0.1 n(γ)

NB: ν_{s} is out-of-equilibrium with $e\mu\nu\gamma$

$$s = \frac{\rho + p}{T} = g_*(a)\frac{2\pi^2}{45}T^3$$

Dilution physics (II)

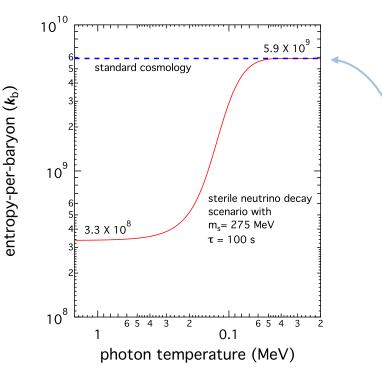
Heavy particle decay during/after weak decoupling

ic	Endothermic	
	$\nu_s \to \nu_i + e^- + e^+$	$ u_s ightarrow u + \pi^0$
γ	$\nu_s \to \nu + \mu^+ + \mu^-$	$\nu_s \to \pi^\pm + e^\mp$
		$\nu_s \to \pi^\pm + \mu^\mp$

Entropy production

- due to out-of-equilibrium decay
- plasma cools slower than decoupled actives
- Dilution
 - decoupled actives diluted down
 - Two effects
 - coupling to plasma \rightarrow reduction in N_{eff}
 - coupling to actives \rightarrow increase N_{eff}

Dilution phyiscs (III)

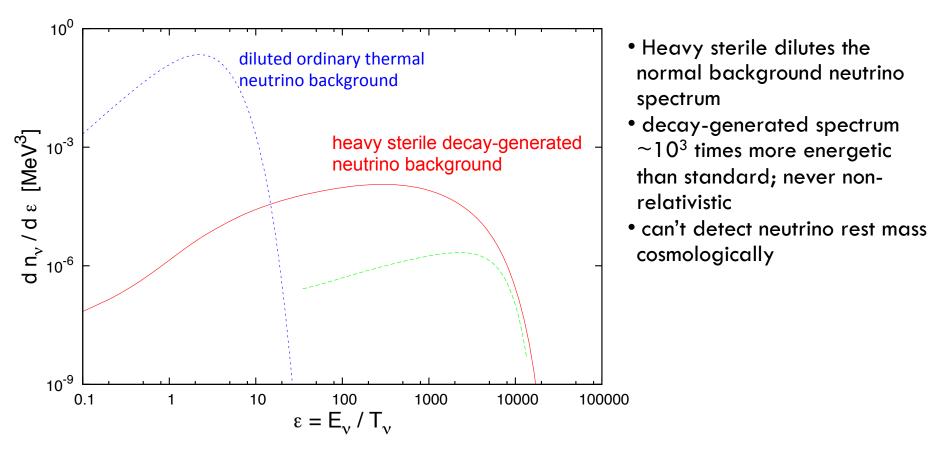

- Photons thermalize
 - sterile neutrino decay (m_s < few GeV)</p>
- But active neutrinos may not
 - energy/decay-epoch dependent

$$\nu_{s} \rightarrow \pi^{0} + \nu_{e,\mu,\tau} \rightarrow 2\gamma + \nu_{e,\mu,\tau}$$

$$\nu_{s} \rightarrow \pi^{+} + e^{-} \rightarrow 2\gamma + 3\nu$$

$$\downarrow^{\mu^{+} + \nu_{\mu}}_{e^{+} + \bar{\nu}_{\mu} + \nu_{e}}$$

$$\nu_{s} \rightarrow \pi^{+} + \mu^{-} \rightarrow 2\gamma + 5\nu$$



Heavy sterile neutrino decay

- **dilution of background (C** ν **B)**
- generation of radiation energy density: N_{eff}
- prodigious entropy production

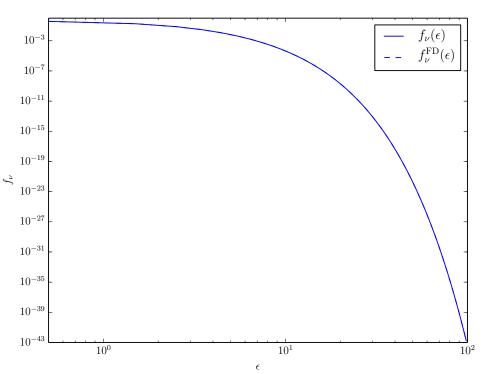
Non-equilibrium distribution of C ν B

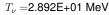
The Big Question: what effect on BBN? Y_P

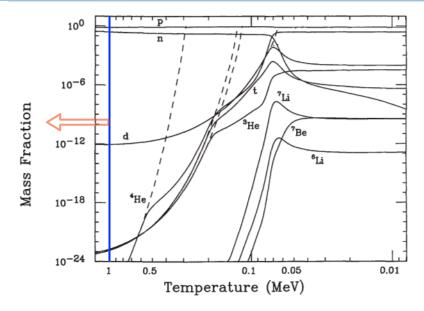
Code capabilities & design

Capabilities

- Boltzmann equation solver: two classes of Boltzmann equations
 - Nucleosynthesis: Unitary Reaction Network for BBN (previous slides)
 - Neutrino energy transport: <u>new capability never before achieved</u>

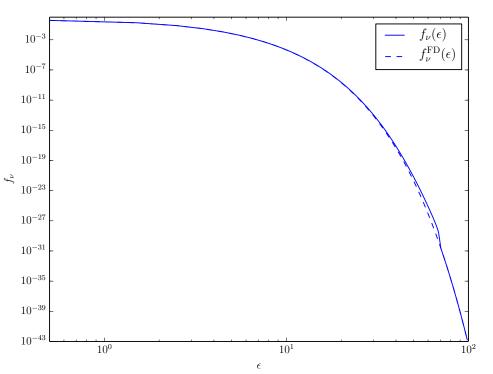

$$\begin{aligned} \frac{Df_1}{Dt} &= \int \frac{s}{2E_1} \frac{d^3p_2}{(2\pi)^3 (2E_2)} \frac{d^3p_3}{(2\pi)^3 (2E_3)} \frac{d^3p_4}{(2\pi)^3 (2E_4)} \\ &\times \langle |\mathcal{M}|^2 \rangle (2\pi)^4 \delta^4 (P_1 + P_2 - P_3 - P_4) F(p_1, p_2, p_3, p_4) \\ \frac{Df_1}{Dt} &= \frac{\kappa}{32(2\pi)^3} \int_0^\infty p_1 p_2^3 dp_2 \int_{-1}^1 dx \frac{(1-x)^2}{\sqrt{p_1^2 + p_2^2 + 2p_1 p_2 x}} \int_{E_{\min}}^{E_{\max}} dp_3 F(p_1, p_2, p_3, p_1 + p_2 - p_3). \end{aligned}$$

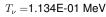

- Various reactions result in seven evaluations of this triple integral
- Achieved short turn-around time by parallelization
- Design
 - Modular code design for adaptability for public code release
 - Allow insertion of "physics packages" to test BSM (not just sterile ν 's)

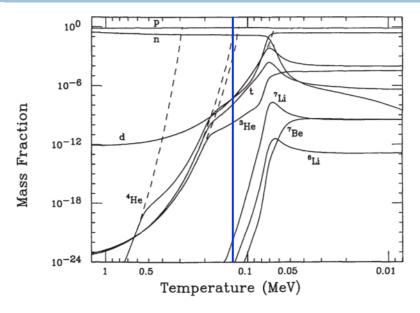


- Evolve assuming equilibrium from 30 MeV → 3 MeV
- Then turn-on only elastic ν -lepton scattering

$$\nu_i + e^{\pm} \rightarrow \nu_i + e^{\pm} \qquad i = e, \mu, \tau$$

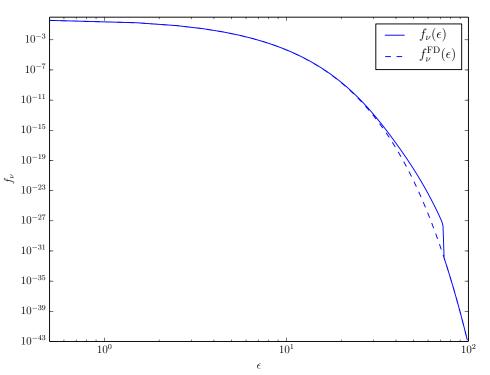



□ since the v & anti-v are cooler than the e[±] anticipate upscattering

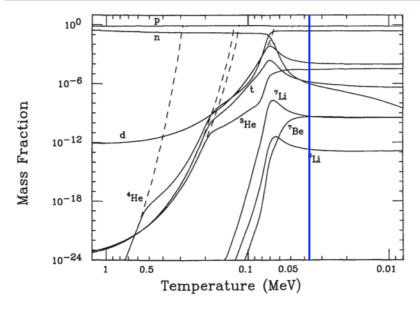


- □ Evolve assuming equilibrium from 30 MeV → 3 MeV
- Then turn-on only elastic ν -lepton scattering

$$\nu_i + e^{\pm} \rightarrow \nu_i + e^{\pm} \qquad i = e, \mu, \tau$$

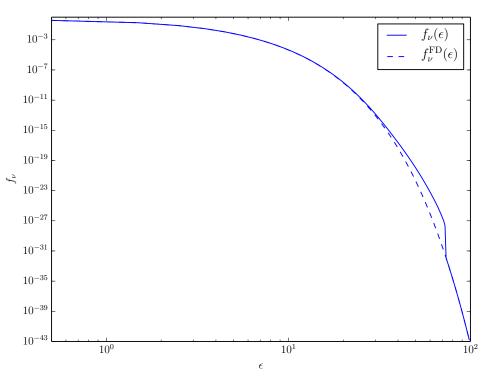


□ since the v & anti-v are cooler than the e[±] anticipate upscattering

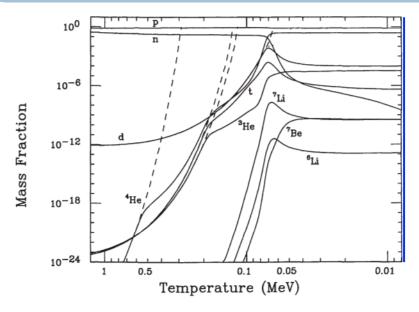


- □ Evolve assuming equilibrium from 30 MeV → 3 MeV
- Then turn-on only elastic ν -lepton scattering

$$\nu_i + e^{\pm} \rightarrow \nu_i + e^{\pm} \qquad i = e, \mu, \tau$$



□ since the v & anti-v are cooler than the e[±] anticipate upscattering



- Evolve assuming equilibrium from 30 MeV → 3 MeV
- Then turn-on only elastic ν -lepton scattering

$$\nu_i + e^{\pm} \rightarrow \nu_i + e^{\pm} \qquad i = e, \mu, \tau$$

- □ since the v & anti-v are cooler than the e[±] anticipate upscattering
- INTERESTING: because " ν decoup. complete by e⁺e⁻ annihilation"

N_{eff}

Elastic scattering

Initial transport temperature [keV]	N _{eff}	 †
20	3.0055	
40	3.0055	4
100	3.005666	1
200	3.005936	
400	3.006555	4
1000	3.008414	1
3000	3.013428	

e^{\pm} annihilation

N _{eff}
3.005584
3.005590
3.005682
3.005985
3.006604
3.008309
3.xxxxx

These preliminary/test results give a nice demonstration that the fundamentals of the neutrino energy transport are working.

