Dense Matter and Neutrinos

J. Carlson - LANL

- Neutron Stars and QCD phase diagram
- Nuclear Interactions
- Quantum Monte Carlo
- Low-Density Equation of State
- High-Density Equation of State
- Neutron Star Matter (protons, hyperons, etc.)
- Mass/Radius relations and observations
- Neutrinos neutron star cooling
- Future

Collaborators: S. Gandolfi (LANL) A. Gezerlis (Guelph) D. Lonardoni (ANL) A. Lovato (ANL) S. Reddy (UW/INT)

Neutron Stars

I-2 Solar Masses~I2 km radius

Outer Crust nuclei + electrons

Inner Crust nuclei + neutrons + electrons

Core neutrons+protons+electrons+... We will concentrate on the core: bulk of the star dominates the M/R curve important for neutrino cooling

charge neutrality + small electron mass $\rightarrow \sim 10\%$ electrons, protons

Predicted by Baade and Zwicky I year after discovery of the neutron

QCD phase diagram (minimal)

from FAIR, new facility in Darmstadt high density and cold very difficult to reach in experiments Color superconductor at very high density; important for neutron stars?

Neutron Star Mass/Radius Relations

For many years only ~1.4-1.5 solar mass neutron stars observed Recently several observed with ~ 2 solar masses!

Transitions to superconducting quark matter Wide range of predictions for mass/radius relationship

Nuclear Interactions

Up to \sim 2-3 x nuclear densities, matter can be described as a system of interacting nucleons

phase shifts for NN scattering - simple model (AV8') compared to experiment

implies 2 nucleons at Fermi surface have $E_{CM} = 160 \text{ MeV}$; $E_{lab} \sim 320 \text{ MeV}$

Nuclear Interactions

Very low densities dominated by ¹S₀ interaction

Very similar to cold atomic Fermi Gases

$$H = \sum_{i} \frac{p_i^2}{2m} + \sum_{i < j} V_0 \,\delta(\mathbf{r_{ij}})$$

Neutron-Neutron Scattering length ~ -18 fm

π

pion + 2-pion + short-range repulsion

Quantum Monte Carlo Methods

$$H = \sum_{i} \frac{p_i^2}{2m} + \sum_{i < j} V_{ij} + \dots$$

$$V_{ij} = \sum_{k} V_{ij}^{k}(r_{ij}) O_{ij}^{k}$$

$$O_{ij}^{k} = [1, \sigma_{i} \cdot \sigma_{j}, \sigma_{i} \cdot r_{ij}\sigma_{j} \cdot r_{ij}, L \cdot S_{ij}] \times [1, \tau_{i} \cdot \tau_{j}]$$

$$H \Psi = E \Psi$$
$$\Psi = \sum_{i=1}^{2^{A} \binom{A}{Z}} \psi(i)(\mathbf{R})$$

 $2^{A} = 7 \times 10^{19}$ amplitudes for 66 neutrons in 3A=198 dimensions Quantum Monte Carlo (Auxiliary Field Diffusion Monte Carlo)

$$\Psi_0 = \exp\left[-H\tau\right] \Psi_T$$

 $\exp[-H\tau] \approx \exp[-V\tau/2]\exp[-T\tau]\exp[-V\tau/2]$

Kinetic Term is a diffusion process in 3A coordinates Spin-dependent potential terms rewritten as coupled to an auxiliary field which is sampled by Monte Carlo, giving rotations of spins (and isospins)

$$\exp[-V\sigma_i \cdot \sigma_j \tau] = \sum_{x=\pm 1} \exp[-V^{1/2}\tau^{1/2}\sigma_i \cdot x] \, \exp[-V^{1/2}\tau^{1/2}\sigma_j \cdot x]$$

The simulation is a branching random walk in 3A coordinates and A spins and isospins.

Equation of State (E/A) for neutrons and cold Fermi atoms

Superfluid Pairing Gap

Cold Atoms have highest superfluid gap / E_F of any system; Neutrons have highest pairing gap / E_F in nature.

Equation of State at Higher Densities: near nuclear saturation

From experiments:

 $E_{SNM}(
ho_0) = -16 MeV$, $ho_0 = 0.16 fm^{-3}$, $E_{sym} = E_{PNM}(
ho_0) + 16$

The symmetry energy is accesible (indirectly) by experiment

At higher densities three-nucleon interactions start to become important

+ short-range correlations (spin/isospin independent).

Calibrated to light nuclei

Consider a wide range of three-nucleon forces that give the same symmetry energy and then see how they extrapolate to high density

We consider different forms of three-neutron interaction by only requiring a particular value of E_{sym} at saturation.

Equations of state with a fixed symmetry energy

Gandolfi, Carlson, Reddy 2012

Strong Correlation between Symmetry Energy and its Derivative

New chiral interaction models give very similar results

Fits to nuclear masses

Lattimer and Lim, ApJ 2013

Variety of Experimental Constraints

Equation of State to Mass / Radius

TOV equations:

from Lattimer

Tolman Oppenheimer Volkov equations: 1939 used free neutron gas to estimate upper bound of 0.7 solar masses

see Silbar and Reddy: arXiv:nucl-th/0309041 for an introduction

Neutron Star Mass/Radius: Calculations

EOS used to solve the TOV equations.

Observations - still controversial

constraints from individual stars observations from 3 X-ray bursars plus 3 low-mass X-ray binaries

Mass radius constraints subject to assumptions

Comparison of theory and observations

 $32 < E_{sym} < 34 MeV, 43 < L < 52 MeV$ Steiner, Gandolfi, PRL (2012).

What about other particles? protons

Quadratic dependence of E versus n/p imablance

Asymmetric nuclear matter $E(
ho, x) = E_{SNM}(
ho) + E_{sym}^{(2)}(
ho)(1-2x)^2$ -

Gandolfi, Lovato, Carlson, Schmidt, arXiv:1406.3388

proton fraction also important for neutrino processes

What about other particles? hyperons, ...

Hyperons are bound in nuclei by ~ 30 MeV. What happens in dense matter?

Hyperons in Neutron Matter

Lonardoni, Lovato, Gandolfi, Pederiva, arXiv:1407.4448 (2014)

Best model gives no hyperons up to 3-4 x saturation density

Neutrinos in neutron stars and proto-neutron stars

Yakovlev 2004

Neutron Star Cooling Introduction

Sensitive to: Equation of state Neutrino Emission Superfluidity Magnetic Fields Surface Direct Urva: Lattimer, Pethick, Prakash, Haensel (1991) ppe $n \rightarrow p + e + \bar{\nu}_e$ $p + e \rightarrow n + \nu_e$ $\bar{\nu}_e$

threshold associated with Fermi surfaces limit this to $\rho > 2 \rho_0$ Requires ~ 15% proton fraction to satisfy energy and momentum conservation

modified Urca works throughout the core

$$n+N \to p+e+N+\bar{\nu}_e$$

much slower

Superfluidity

suppresses familiar neutrino processes creates new process: production through Cooper pairing 3P2 - 3F2 pairing particularly important but not well constrained

log(nuclear saturation density in g/cm³) \sim 14.4

Neutron and Proto-Neutron Star Cooling

Neutron star cooling depends upon Equation of State Neutrino Emission and Propagation Neutron (and proton) Superfluidity + ...

Supernovae neutrino emission also depends upon weak response of matter interesting regime at low densities (0.1 **ρ**₀) and moderate temperatures (non-degenerate matter)

Rapid progress in theory and observations

Summary/ Outlook

Rapid progress in our understanding of cold dense matter

Excellent connections to Theory of strongly-correlated matter Experiments in cold atom physics Astrophysical observations Future measurements of gravitational waves Supernovae physics and neutrino physics

