radiation transport in supernovae

daniel kasen, UC Berkeley/LBNL

why do radiation transport?

- * That's what we see! (photon and neutrino light curves and spectra)
- * Radiation can be dynamically important (transports energy and momentum)
- Radiation can alter the composition (neutrinos can exchange protons and neutrons)

Core collapse SN simulation 3D hydro + highly simplified neutrino transport

CASTRO code Nordhaus, Burrows, Almgren, Bell, Chupa

optical light curve (time to peak ~ 20 days)

SN location in galaxy

optical spectrum

what counts as radiation?

some typical interaction cross-sections

photon-electron scattering

 $\sigma_{\rm t} \sim 10^{-24} \ {\rm cm}^2$

neutrino-nucleon scattering

$$\sigma_{\nu} \sim G_F^2 E_{\nu}^2 \sim 10^{-44} \left(\frac{E_e}{1 \text{ MeV}}\right)^2 \text{ cm}^2$$

electron (coulomb) scattering

$$\sigma_e \sim \sigma_t \left(\frac{E_e}{m_e c^2}\right)^{-2} \sim 10^{-13} \left(\frac{E_e}{1 \text{ eV}}\right)^{-2} \text{ cm}^2$$

Photons and neutrinos move around much more easily! they are not necessarily in equilibrium/isotropic

when do we need transport? compare transport timescale to dynamical optical depth: $\tau = \sigma n R$ free-streaming time ($\tau < 1$) $t_{\rm fs} = R/c$ diffusion time ($\tau > 1$) $t_d = \tau(R/c)$

neutrinos near neutron star surface	τ ~ several
(r ~ 10 km, σ ~ 10	t ~ ms
photons in a solar-type star	τ ~ 10 ¹¹
(r ~ 10	t ~ 10,000 yrs
photons in an expanded SN remnant	τ ~ 100
(r ~ 10	t ~ month

neutrinos for the explosion, photons for the aftermath

how to describe radiation

the field is fully described by a *distribution function*

$$f = f(x, y, z, t, E, \theta, \phi)$$

of particles at (x,y,z,t) with energy E moving in direction (θ , ϕ)

or, equivalently: $f = f(\vec{x}, \vec{p}, t)$

distribution of particles in phase space

often we use the *specific intensity*

$$I_{\nu} = h\nu c \times f$$

however you do it, we have a function of 7 variables!

thermodynamic equilibrium

if collisions are frequent we reach equilibrium. *f* becomes isotropic (no (θ, ϕ) dependence) and the E dependence is a known function of temperature

e.g., maxwell-boltzmann distribution

for gas, we can usually make this assumption and do hydrodynamics (neglect θ,φ,E dependence)

but radiation will not be in equilibrium unless the optical depths are very large

the radiative transfer equation a.k.a the Boltzmann equation

The full 7-D transport problem is *hard*

example discretization

dimension	# of points	
spatial (x,y,z)	256x256x256	
angular (θ,φ)	30x30	
frequency (v)	30	
total	4.5 x 10	

very memory intensive (~1 Tb in this example) and computationally expensive to solve at every time step

a variety of radiation transport methods

leakage scheme

flux limited diffusion

M1 methods

ray-by-ray

variable eddington tensor (VET)

monte carlo

various levels of approximation (reduction of dimensions) "approximate" transport "no transport" transport ways to capture effects of heating and cooling optically thin, $\tau \ll 1$ (no attenuation) local emission (cooling) = η (all radiation escapes) impinging radiation field (heating) $F = L/4 \pi r^2$ (if a spherical source, "light-bulb")

leakage scheme, $\tau > 1$ (include attenuation)

local emission (cooling) = $\eta e^{-\tau}$ (not all radiation escapes)

impinging radiation field (heating) $F = L/4 \pi r^2 e^{-\tau}$ (spherical source radiation is attenuated)

need to integrate to determine τ and do some appropriate average

most approximate transport methods attempt to reduce the dimensionality of the 7-D problem

dimension	approximations	proper
spatial (x,y,z)	1D (spherical symmetry) or 2D (axial symmetry) ray-by-ray methods	3-D
frequency (v)	grey transport	multi-group
angular (θ,φ)	diffusion approximation M1, moment methods	Boltzmann transport

grey approximation neglect frequency dependence

not great for supernova neutrinos, since many cross-sections depend on frequency, $\sigma \sim E^2$

simplifying the angular dependence with moments of the radiation field a decomposition of the angle dependence not unlike spherical harmonics

moments of the radiation transport equation integrate out the angle dependence

Oth moment: $\oint [\text{RT Eq}] d\Omega$

expression of radiation energy conservation! but one equation, and four unknowns $(E_{\nu} \vec{F}_{\nu})$ moments of the radiation transport equation integrate out the angle dependence

1th moment:
$$\oint [\text{RT Eq}] \vec{n} d\Omega$$

$$\frac{1}{c}\frac{d\vec{F}_{\nu}}{dt} + c\vec{\nabla}\cdot\mathbf{P}_{\nu} = -\chi_{\rm abs}\vec{F}_{\nu}$$

 $\mathbf{P}_{\nu} = \oint I_{\nu} \hat{n} \hat{n} d\Omega$ radiation pressure tensor

expression of radiation momentum conservation! 3 new equations, but added more unknowns in **P**

we could just keep going...need to close the system

diffusion approximation

use **only** the Oth moment

$$\frac{dE_{\nu}}{dt} + \vec{\nabla} \cdot \vec{F}_{\nu} = -\chi_{\rm abs} cE_{\nu} + 4\pi\eta$$

and close with the law diffusion

$$\vec{F_{\nu}} = -\frac{c}{3\chi}\vec{\nabla}E_{\nu}$$

i.e., radiation "flows down the energy gradient" with a diffusion constant $c/3\chi$

numerical solution of diffusion equation basic case of 1D diffusion

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}$$
 diffusion equation (parabolic)

discretize the equation (implicit approach)

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = \frac{a}{2(\Delta x)^2} \left(\left(u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1} \right) + \left(u_{i+1}^n - 2u_i^n + u_{i-1}^n \right) \right)$$

 $\begin{vmatrix} b_1 & c_1 & & & \mathbf{v} \\ a_2 & b_2 & c_2 & & \\ a_3 & b_3 & \ddots & \\ & \ddots & \ddots & c_{n-1} \\ \mathbf{0} & & & \mathbf{a} & \mathbf{b} \end{vmatrix} \begin{vmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_n \end{vmatrix} = \begin{vmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end{vmatrix}$ need to solve a linear system of equations a tridiagonal matrix

use some numerical method to solve linear equations (e.g., conjugate gradient, multi-grid)

flux-limited diffusion

One problem with the diffusion approximations that the flux can become infinitely large when the material is optically thin —> faster than light energy transport

fix it up with a fudge factor D(r)

$$\vec{F_{\nu}} = -D(R)\frac{c}{\chi}\vec{\nabla}E_{\nu}$$

where a common choice is (Levermore and Pomraning 1981)

$$D(R) = \frac{2+R}{6+3R+R^2} \text{ where } R = \frac{\vec{\nabla}E_{\nu}}{\chi E}$$

limitations of diffusion approximation shadow problem

M1 transport

use **both** the 0th and 1st moment equations

$$\frac{dE_{\nu}}{dt} + \vec{\nabla} \cdot \vec{F}_{\nu} = -\chi_{\rm abs} cE_{\nu} + 4\pi\eta$$

$$\frac{1}{c}\frac{d\vec{F}_{\nu}}{dt} + c\vec{\nabla}\cdot\mathbf{P}_{\nu} = -\chi_{\rm abs}\vec{F}_{\nu}$$

use an analytic closure relation that relates **P** to F using local info (e.g., entropy considerations) (somewhat like is done with a flux limiter)

limitations of diffusion approximation shadow problem

limitations of M1 transport "collision" of radiation fronts

from Jim Stone's HIPACC lecture

http://hipacc.ucsc.edu/LectureSlides/22/333/130801_1_Stone.pdf

"full" (Boltzmann) transport

formal integration of the transfer equation

long characteristics

short characteristics

guess I, η , χ and integrate the equations, then iterate need to apply acceleration techniques to speed convergence (e.g., accelerated lambda iteration)

variable eddington tensor (VET)

use both the 0th and 1st moment equations

$$\frac{dE_{\nu}}{dt} + \vec{\nabla} \cdot \vec{F}_{\nu} = -\chi_{\rm abs} cE_{\nu} + 4\pi\eta$$

$$\frac{1}{c}\frac{d\vec{F}_{\nu}}{dt} + c\vec{\nabla}\cdot\mathbf{P}_{\nu} = -\chi_{\rm abs}\vec{F}_{\nu}$$

close using the Eddington Tensor: ${f f}={f P}_{
u}/E_{
u}$

to get **f**, solve the full Boltzmann equation, but don't need to do this at every time step

monte carlo transport

radiation field represented by discrete particles that randomly interact

monte carlo transport

each packet represents a number of photons with a position vector (x,y,z), a direction vector ($D_{x,} D_{y}, D_{z}$), a frequency, and a total packet energy.

probability of traveling a distance x before scattering

$$P = \exp(-\tau) = \exp(-\kappa\rho x) = \mathcal{R}$$

R is a random number sampled uniformly between (0, 1]

solve for x (distance traveled before scattering) $x = -(\kappa\rho)^{-1}\log(\mathcal{R})$

supernova light curves and spectra

Hammer et al 2010

3D core collapse hydro simulation

SN ejecta and explosive nucleosynthesis

supernova light curves

what sets the light curve duration?

the diffusion time of photons through the optically thick remnant

$$t_{\rm d} = \tau \left[\frac{R}{c} \right]$$

but since the remnant is expanding, R = vt

$$t_{\rm d} \sim \frac{M\kappa}{(vt)c}$$

solving for time (i.e., diffusion time ~ elapsed time)

$$t_{\rm d} \sim \left[\frac{M\kappa}{vc}\right]^{1/2}$$

e.g., arnett (1979)

transport in moving media

$$\gamma(1 + \beta\mu) \frac{\partial I_{v}}{\partial t} + \gamma(\mu + \beta) \frac{\partial I_{v}}{\partial r}$$

$$= \frac{\partial}{\partial \mu} \left\{ \gamma(1 - \mu^{2}) \left[\frac{1 + \beta\mu}{r} - \gamma^{2}(\mu + \beta) \frac{\partial \beta}{\partial r} \right] - \gamma^{2}(1 + \beta\mu) \frac{\partial \beta}{\partial t} \right] I_{v} - \gamma^{2}(\mu + \beta) \frac{\partial \beta}{\partial t} = \frac{\partial}{\partial v} \left\{ \gamma v \left[\frac{\beta(1 - \mu^{2})}{r} + \gamma^{2}\mu(\mu + \beta) \frac{\partial \beta}{\partial r} + \gamma^{2}\mu(1 + \beta\mu) \frac{\partial \beta}{\partial t} \right] I_{v} \right\} + \gamma \left\{ \frac{2\mu + \beta(3 - \mu^{2})}{r} + \gamma^{2}(1 + \mu^{2} + 2\beta\mu) \frac{\partial \beta}{\partial r} + \gamma^{2}[2\mu + \beta(1 + \mu^{2})] \frac{\partial \beta}{\partial t} \right\} I_{v} = \eta_{v} - \chi_{v} I_{v}.$$
(1)

thermal optical spectrum

sedona radiation transport calculation

model predicted spectral evolution t = 6.0 days

comparing models to optical observations Type la supernova

tomorrow: transport in neutron star mergers

