Core Collapse & Neutron Star Mergers

Christian D. Ott TAPIR, Caltech cott@tapir.caltech.edu

Lecture Plan

- Lecture 1 (yesterday)
 - Core collapse supernovae (CCSNe), the nuclear equation of state, and neutron star structure.
 - Numerical relativity, general-relativistic hydrodynamics, and neutron star merger simulations with the Einstein Toolkit.
- "Workshop" (yesterday afternoon)
 - Neutron star structure calculations
 - Black hole formation in stellar collapse
 - Neutron star merger simulations
- Lecture 2 (now!)
 - LIGO and Gravitational-Wave Astronomy
 - Phenomenology of neutron star mergers.
 - Extreme core collapse events and the CCSN-LGRB relationship.
 - Gravitational waves from core-collapse supernovae.

Gravitational Waves

Caltech

 $G^{\mu\nu} = \frac{8\pi G}{c^4} T^{\mu\nu}$

Gravitational Waves

inhomogeneous wave equation -> gravitational waves (GWs)

Gravitational Waves

In transverse-traceless gauge (TT) all gauge degrees of freedom fixed:

http://www.johnstonsarchive.net/relativity/pictures.html

C. D. Ott @ HIPACC Summer School 2014, 2014/07/23

- GWs are to lowest-order quadrupole waves.
- Emitted by accelerated aspherical bulk mass-energy motions.
- Slow-motion weak-field quadrupole approximation:

$$h_{jk}^{TT}(t,\vec{x}) = \begin{bmatrix} \frac{2}{c^4} \frac{G}{|\vec{x}|} \ddot{I}_{jk}(t - \frac{|\vec{x}|}{c}) \end{bmatrix}^{TT} \quad \text{"Transverse-Traceless Gauge"}$$
dimensionless GW
"strain" (displacement) mass quadrupole moment $\frac{G}{c^4} \approx 10^{-49} \text{ s}^2 \text{ g}^{-1} \text{ cm}^{-1}$
First Numerical Estimate: $M \equiv$ "aspherical mass"
$$I_{jk} = \int \rho x_j x_k d^3 x \quad \frac{d^2}{dt^2} I \sim \mathcal{O}(Mv^2) \quad h \sim \frac{2G}{c^4 D} Mv^2$$

$$M = 1M_{\odot} \quad v = 0.1c$$

$$D = 10 \text{ kpc} \quad h \sim 10^{-19}$$
C. D. OIL (# HIPACC Summer School 2014, 2014/07/23) (5)

- **GWs** are very weak and interact weakly with matter.
 - No human-made sources.

• **GWs** are very weak and interact weakly with matter.

- **GWs** are very weak and interact weakly with matter.
 - No human-made sources.
 - Bad: Very hard to detect.
 - Good: Travel from source to detectors unscathed by intervening material.

C. D. Ott @ HIPACC Summer School 2014, 2014/07/23

Astrophysical GW Sources

• Coalescing binaries:

NS/NS, NS/BH $h \approx 10^{-22} @ 100 \,\mathrm{Mpc}$ BH/BH (2 x 30 M_{Sun}) $h \approx 10^{-22} @ 1 \,\mathrm{Gpc}$

Core-collapse supernovae:

convection, rotation etc. $h \approx 10^{-22} @ 10 \, {\rm kpc}$

• Other:

- Spinning NSs with mountains.
- Glitching pulsars.
- Bursting soft-gamma repeaters.
- Cosmological background, cosmic string cusps.
- At low frequencies: double WDs, supermassive BH-BH binaries.

Key GW Sources: Coalescing Binaries

Consider a circular binary of point particles.

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$
$$M = m_1 + m_2$$

 $r_1^i(t) = \frac{\mu a}{m_1} \{\cos\theta, \sin\theta, 0\} \quad a = |r_1| + |r_2| \text{ (semi-major axis)}$ $r_2^i(t) = \frac{\mu a}{m_2} \{-\cos\theta, -\sin\theta, 0\}$

$$\theta = \omega t = 2\pi f_{\rm orb} t = 2\pi \frac{1}{P_{\rm orb}} \qquad \omega = \sqrt{\frac{1}{a^3}}$$

Now evaluate:

$$I_{jk} = \int \rho x_j x_k d^3 x \qquad h_{jk}^{TT}(t, \vec{x}) = \left[\frac{2}{c^4} \frac{G}{|\vec{x}|} \ddot{I}_{jk}(t - \frac{|\vec{x}|}{c})\right]^{TT}$$

$$I_{xx} = \int d^3x (\rho x^2) = m_1 x_1^2 + m_2 x_2^2$$

= $\left(\frac{\mu^2 a^2}{m_1^2} m_1 + \frac{\mu^2 a^2}{m_2^2} m_2\right) \cos^2 \omega t$
= $\mu^2 a^2 \left(\frac{1}{m_1} + \frac{1}{m_2}\right) \cos^2 \omega t$
= $\mu a^2 \cos^2 \omega t = \frac{1}{2} \mu a^2 (1 + 2\cos 2\omega t)$

Similarly, obtain the other components:

$$I_{ij} = \frac{1}{2}\mu a^2 \begin{pmatrix} \cos 2\omega t & \sin 2\omega t & 0\\ \sin 2\omega t & -\cos 2\omega t & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Second time derivative:

$$\ddot{I}_{ij} = 2\mu a^2 \omega^2 \begin{pmatrix} -\cos 2\omega t & -\sin 2\omega t & 0 \\ -\sin 2\omega t & \cos 2\omega t & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

For observer at distance D along the z axis already in TT gauge:

$$h_{ij}^{TT} = \frac{4G}{c^4} \frac{\mu a^2 \omega^2}{D} \begin{pmatrix} -\cos 2\omega t & -\sin 2\omega t & 0\\ -\sin 2\omega t & \cos 2\omega t & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Radiated energy must come from orbital energy -> also change of angular momentum. Change of orbital separation:

$$\left\langle \frac{da}{dt} \right\rangle = -\frac{64}{5} \frac{G^3}{c^5} \frac{m_1 m_2 M}{a^3} \quad a(t) = \left(\frac{256}{5} \frac{G^3}{c^5} \mu M^2\right)^{\frac{1}{4}} (t_c - t)^{\frac{1}{4}}$$

Coalescence time:

$$\tau_{\rm merge} = a_0^4 \frac{5}{256} \frac{c^5}{G^3} \frac{1}{\mu M^2} \qquad {\rm m1=m2=1.4} \ {\rm M}_{\odot}$$

$$\begin{aligned} a_0 &= 10^6 \text{ km} & -> \tau_{\text{merge}} \sim 120 \times 10^6 \text{ yrs.} \\ a_0 &= 1000 \text{ km} & -> \tau_{\text{merge}} \sim 3700 \text{ s} \\ a_0 &= 100 \text{ km} & -> \tau_{\text{merge}} \sim 370 \text{ ms} \end{aligned}$$

(but: Newtonian estimates!)

GW Frequency Evolution

 $\begin{array}{ll} \mbox{Frequency evolution:} & \dot{a} = -\frac{64}{5} \frac{G^3}{c^5} \frac{\mu M^2}{a^3} \\ & f = 2 \frac{\omega}{2\pi} = \frac{1}{\pi} (GM)^{\frac{1}{2}} a^{-\frac{3}{2}} \end{array}$

$$\dot{f} = \frac{96}{5}\pi^{\frac{8}{3}} \frac{G^{\frac{5}{3}}}{c^5} \mathcal{M}^{\frac{5}{3}} f^{\frac{11}{3}}$$

 $\mathcal{M}=\mu^{3/5}M^{2/5}$ "Chirp Mass"

GW Frequency Evolution

C. D. Ott @ HIPACC Summer School 2014, 2014/07/23

GW Signal

Gravitational Waves: Indirect Evidence

- GWs lead to "orbital decay"
 -> binary stars get closer to each other.
- Double neutron star systems in the Milky Way.
- PSR 1913+16: "Hulse-Taylor Pulsar"
 - -> Nobel prize in Physics 1993

Gravitational Wave Detection

Laser Interferometer Gravitational-Wave Observatory

LIGO Hanford, Washington 2 & 4 km interferometers

Caltech

LIGO Livingston, Louisiana 4 km interferometer

Measure relative displacements of 10⁻²²

Envisioned in the 1980s by Kip Thorne, Rai Weiss, Ron Drever Built in the 1990s.

6 "science runs" 2002-2010.

D. Ott @ HIPACC Summer School 2014, 2014/07/23

Laser Interferometer Gravitational-Wave Observatory

LIGO Hanford, Washington 2 & 4 km interferometers

Caltech

 -> Hydrogen Bohr radius at the Earth-Sun distance. -> 1/1000 proton radius over 4 km arm length.

Livingston, Louisiana interferometer

Measure relative displacements of 10⁻²²

Envisioned in the 1980s by Kip Thorne, Rai Weiss, Ron Drever Built in the 1990s.

6 "science runs" 2002-2010.

. D. Ott @ HIPACC Summer School 2014, 2014/07/23

Initial LIGO: 2000-2010 currently being upgraded to Advanced LIGO

Advanced LIGO will be 10 x more sensitive!

Noise Sources

Noise Budget

Anthropogenic Noise...

+ trucks, trains, tree cutting, rush hour on highways...

Initial LIGO Interferometers: Sensitivity

The Data Analysis Challenge: Digging out the Signal

Gravitational Wave Astronomy International Network of LIGOs

First Generation – 2000 -- 2010

- Sky coverage
 - Duty cycle

Joint LIGO/GEO + Virgo data in most recent science runs.

C. D. Ott @ HIPACC Summer School 2014, 2014/07/23

Advanced LIGO

What is Advanced?

			PTY	
Parameter	Initial LIGO	Advanced LIGO	ETM	
Input Laser Power	10 W (10 kW arm)	180 W (>700 kW arm)		
Mirror Mass	10 kg	40 kg		
Interferometer Topology	Power- recycled Fabry-Perot arm cavity Michelson	Dual-recycled Fabry-Perot arm cavity Michelson (stable RC)	$PR3 \qquad SR2 \qquad POX \qquad \qquad$	
Optimal Strain Sensitivity	3 x 10 ⁻²³ / rHz	Tunable, better than 5 x 10 ⁻²⁴ / rHz in broadband		
Seismic Isolation Performance	<i>f_{low}</i> ~ 50 Hz	f _{low} ~ 12 Hz	Using the Using the Vacuum s	e same system
Mirror Suspensions	Single Pendulum	Quadruple pendulum	, as initial	

(((0)))

PTX

Advanced LIGO Mirrors

- Made of high-purity fused silica.
- Initial LIGO: 25 cm diameter, 10 cm thick, 10.7 kg.
 Advanced LIGO: 34 cm diameter, 20 cm thick, 40 kg.
- Surfaces polished to ~1 nm, most with slight curvature.
- Coated to reflect with extremely low scattering loss.

(Source: P. Shawhan, UMD)

0.9529 nm

ETM 01 R1 D300 Z1-4 Removed

The Future: Advanced Detectors

Advanced LIGO: Status & Timeline

• Advanced LIGO:

- Livingston (L1) detector completed, locked for > 2h.
- Hanford (H1) in final stages of installation.
- On track for first science data in mid/late 2015.
- Design sensitivity expected 2017-2020.
 NS-NS range ~200-300 Mpc; CCSNe: galaxy, LMC/SMC
- First science run 2-detector (poor sky localization).
- Advanced Virgo & KAGRA: 2015/16+
- LIGO India: 2021-22+

Current L1 Sensitivity

DARM NOISE, PSL POWER = 4.7W

Expected Sensitivity Evolution

What will Advanced LIGO see?

(and how often will it see it?)

- Nearby core-collapse supernova rate: (1– 3) / 100 yrs. (No galactic core-collapse supernova until aLIGO ready!)
- Binary merger rate? Rough Estimate:
 - Merger rate in the Milky Way: few per 10⁶ yrs.
 - Advanced LIGO NSNS range: 200 Mpc
 - Milky Way-equivalent galaxy density: 1 / 100 Mpc³
 - Detection rate: O(1)/yr

What will 2019 Advanced LIGO see?

(and how often will it see it?)

• Summarized in Abadie et al., CQG 27, 173001 (2010) :

IFO	Source ^a	$\dot{N}_{\rm low} { m yr}^{-1}$	$\dot{N}_{\rm re} { m yr}^{-1}$	$\dot{N}_{\rm high}~{ m yr}^{-1}$	$\dot{N}_{\rm max} { m yr}^{-1}$
	NS–NS	2×10^{-4}	0.02	0.2	0.6
Initial	NS-BH	7×10^{-5}	0.004	0.1	
	BH–BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$< 0.001^{b}$	0.01 ^c
	IMBH-IMBH			$10^{-4 d}$	10^{-3e}
	NS–NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
Advanced	BH–BH	0.4	20	1000	
	IMRI into IMBH			10 ^b	300 ^c
	IMBH-IMBH			0.1 ^d	1 ^e

 Table 5. Detection rates for compact binary coalescence sources.

Warning: Population synthesis!

"Realistic" (=best-guess) event rates per year with advanced detectors later this decade

Neutron Star Mergers

- Neutron Star + Neutron Star (NSNS)
- Black Hole + Neutron Star (BHNS)

 $M_1 \sim M_2 \sim 1.4 M_{Sun}$ -> galactic NSNS binaries! M_{BH} ~ 7-10 x M_{NS} (Belczynski+'10) (but no BHNS systems known)

NSNS Merger Scenarios

Outcome most sensitive to total mass of binary and nuclear EOS.

NSNS Postmerger Evolution

HMNS: support by differential rotation, only small thermal contribution. Secular evolution: governed by energy loss to GWs, neutrinos, and angular momentum redistribution by 3D torques / magnetorotational instability.

NSNS Postmerger Evolution

Sekiguchi+11a

BHNS Merger Scenarios

- Tidal disruption or complete "swallow".
- The greater BH spin a*, the stronger disruption.
- The larger M_{BH}, the more spin required for disruption.
- Typical BH/NS mass-ratio uncertain.
 Best guess: 7/1 – 10/10.

BHNS Merger Scenarios: Remnant

Gamma-Ray Bursts

[Reviews: e.g. Woosley & Bloom '06, Piran '05, Meszaros '05]

- Two general groups of GRBs: Long and Short
- Favored model: Beamed Ultrarelativistic outflow emitting γ-rays.

BATSE 4B Catalog

GRB

GRB

BATSE

BURSTS 09

20

b 40

NUMBER

NSNS Mergers and the Nuclear EOS

- LIGO will measure M_{chirp}, mass ratio.
- Late inspiral: Tidal deformation of the NSs
 -> EOS-dependent effect on phase evolution of the waveform
- Merger / postmerger:
 - Survival of the HMNS
 - Oscillation frequencies of the postmerger HMNS.

NSNS Mergers and the Nuclear EOS

C. D. Ott @ HIPACC Summer School 2014, 2014/07/23

BHNS Mergers and the Nuclear EOS

- LIGO will measure M_{chirp}, mass ratio.
- Tidal deformations during late inspiral very small.
- If NS disrupted, cut-off frequency of GW signal sensitive to NS radius.

C. D. Ott @ HIPACC Summer School 2014, 2014/07/23

Extreme Core-Collapse Supernovae and the Long-GRB – CCSN Relationship

Extreme Core-Collapse Supernovae

- Type Ic-bl ("broad lined") core-collapse supernovae
- Relativistic outflows, hyperenergetic: ~10⁵² erg = 10 B
- ~1% of all CCSNe
- ~10% of Type Ic-bl CCSNe associated with a long GRB.
- All CCSNe associated with GRBs are Type Ic-bl.
 11 GRB-CCSNe known.

Extreme Core-Collapse Supernovae

 What powers a hypernova / a long GRB? Neutrino-driven CCSN mechanism is inefficient (η~10%); difficult to obtain 1 B!

Possiblity:

Rapid rotation + strong magnetic fields -> energetic collimated outflows

The CCSN – Long Gamma-Ray Burst Connection

The CCSN – Long Gamma-Ray Burst Connection

The CCSN – Long Gamma-Ray Burst Connection

(1) Millisecond Proto-Magnetar Model

-> GRB driven by spindown; requires O(ms) initial period. Subsequent to a successful CCSN explosion.

(2) Collapsar Model

- -> Requires accretion disk near ISCO;
 - $j = \Omega r^2 = 10^{16} 10^{17} \text{ cm}^2/\text{s}.$

"Magnetorotational Explosions"

- Differential rotation -> reservoir of free energy.
- Spin energy tapped by magnetorotational instability (MRI)?

Burrows+'07

Magnetorotational Mechanism

[LeBlanc & Wilson '70, Bisnovatyi-Kogan '70, Burrows+ '07, Takiwaki & Kotake '11, Winteler+ 12]

Rapid Rotation + B-field amplification

(need magnetorotational instability [MRI]; difficult to resolve in stellar cores)

2D: Energetic bipolar explosions.

Results in ms-period proto-magnetar. GRB connection?

Caveat: Need high core spin; only in very few progenitor stars?

Bur	row	'S+'(07

(10¹¹ G seed field)

×	s		×		۴		\$		4							4			1	1
- 76	¥.		5		v		٠		٠							×			×	e
×	٠		۰.		٠		۰.												¢	۷
•	۲		٠		ь		٠					۰.				٠			¢	*
. 50	۶		5		٠		٠		٠			٠				*			*	٠
. •	٧		5		÷		٠		٠										٠	
	٠		٠		٠		٠									٠			۴	e
	۶.		٠		٠		٠					٠				٠			٠	•
•	۰.		٠		٠		٠		-			٠				٠			٠	
-	۰.		•		٠		٠		•			٠				٠			*	
•	۰.		۲		٠		•		-			۰.				٠			٠	۳
	•		٠		٠		4			۲									٠	٠
-	٠		٠		÷		•					•							٣	٠
	٠		٠		٠		×		1			۰.				٠			٠	•
-	٠		٠		*		4												-	۲
	٠		٠		٠		1		1							٠			-	•
•	٠		٠		•		٩.									٠			•	•
-	4		٠		ł,		4		۰.			•				-			4	٠
-	۰.		•		٠		۰.			۰.									٠	•
- 14	۰.		٠		٠		•		-			*				٠				-
-	٠		•		٠		٠		*			٠				*			•	•
	•		*		٠		٠		•							*			•	•
	٠		٠		٠		٠		٠			٠				*			4	•
	٠		٠		٠		٠					*				٠			-	٩
	٠		۶.		۴		٠		٠			۰.				•			•	•
÷.	×		1		۴		٠		۰.			٠				.*			4	•
	٠		٠		۲		٠		٠			۰.	4		15	D 1 -	ù	224	111	
- 4	٠		٠		۴		۲							IN	10	B-F	iel	d		
	2		2		8		٠		٠			٩.		Ti	те	=-	183	1.5	ms	
	*		٠		۴		1		1			٩.	F	ad	ius	=	50	0.0	0 ki	m

C. D. Ott @ HIPACC Summer School 2014, 2014/07/23

3D Dynamics of Magnetorotational Explosions

New, full 3D GRMHD simulations. **Mösta+ 2014**, ApJL. Initial configuration as in Takiwaki+11, 10¹² G seed field.

Octant Symmetry (no odd modes) C. D. Ott @ HIPACC Summer School 2014, 2014/07/23

Full 3D

What is happening here?

Mösta+14, ApJL

• B-field near proto-NS: $B_{tor} >> B_{z}$

Richers

- Unstable to MHD screw-pinch kink instability.
- Similar to situation in Tokamak fusion reactors!

Credit: Moser & Bellan, Caltech

Braithwaite+ '06

C. D. Ott @ Illinois, 2014/02/18

Mösta+ 2014 ApJL t = -3.00 ms

$$\beta = \frac{P_{\text{gas}}}{P_{\text{mag}}}$$

Mösta+ 2014 ApJL

Consequence?

- If explosion fails to develop: BH formation
- ms Proto-magnetar scenario for GRBs might not work.
- Type Ic-bls might be coming from collapsars.

SNR W49B; harboring a black hole? (Lopez+13) Image credit: Composite X/IR/Radio image NASA/CXC/MIT/Lopez et al./ Palomar/SF/NRAO/VLA Gravitational Waves from Core-Collapse Supernovae

Observing the Heart of a Supernova

Probes of Supernova Physics:

- Gravitational Waves
- Neutrinos
- EM waves (optical/UV/X/Gamma): secondary information, late-time probes.

Red Supergiant Betelgeuse

Gravitational-Waves from Core-Collapse Supernovae

Recent reviews: Ott 09, Kotake 11, Fryer & New 11

Need:

$$h_{jk}^{TT}(t, \vec{x}) = \left[\frac{2}{c^4} \frac{G}{|\vec{x}|} \ddot{I}_{jk}(t - \frac{|\vec{x}|}{c})\right]^{TT} \longrightarrow$$

accelerated aspherical (quadrupole) mass-energy motions

Candidate Emission Processes:

- Turbulent convection
- Rotating collapse & bounce
- 3D MHD/HD instabilities
- Aspherical mass-energy outflows

GWs from Convection & Standing Accretion Shock Instability

Recent work: Murphy+09, Kotake+09, 11, Yakunin+10, E. Müller+12, B.Müller+13

Time-Frequency Analysis of GWs

Murphy, Ott, Burrows 09, see also B. Müller+13

Detectability?

GWs from Rotating Collapse & Bounce

Recent work: Dimmelmeier+08, Scheidegger+10, Ott+12, Abdikamalov+13

- Axisymmetric: ONLY h₊
- Simplest GW emission process: Rotation + mass of the inner core + gravity + stiffening of nuclear EOS
- Strong signals for rapid rotation (-> millisecond proto-NS).

Can we observe these waves?

-> Throughout Milky Way f [Hz] with aLIGO

GWs from Rotating Collapse & Bounce

Abdikamalov, Gossan, DeMaio, Ott, arXiv:1311.3678

Simple signal features:

C. D. Ott @ HIPACC Summer School 2014, 2014/07/23

Measuring Inner Core Angular Momentum

Abdikamalov, Gossan, DeMaio, Ott, arXiv:1311.3678

Now is a great time to join to help us gain APS division status by 2015, the centennial of General Relativity!