Mass, Structure and Quenching

Joanna Woo ETH Zürich

Marcella Carollo (ETHZ) Avishai Dekel (HUJI) Sandra Faber (UCSC) David Koo (UCSC)

UCSC Galaxy Formation Workshop 13 Aug. 2014

Quenching Models

Centrals:

- Virial shock heating in halos > $M_{\rm crit} \sim 10^{12} \,\mathrm{M_{\odot}}$ Halo
- Gaseous inflow to a compact bulge → starburst → gas exhaustion

Galaxy

Galaxy + Halo

- Major mergers
- Gravitationally unstable disc
- Morphological quenching: bulge stabilises the disc
- AGN heating

Satellites:

- Ram pressure stripping: gas (strangulation)
- Tidal stripping: gas and stars
- Harrassment: high speed interactions

Mass vs. Morphology: Centrals

Quenching Results for Centrals

- $\Sigma_{1 \rm kpc}$ correlates with $f_{\rm q}$
- $\Sigma_{1 \text{kpc}}$ predicts the shape of the SSFR distribution • M_{h} correlates with SSFR
 - $M_{\rm h}$ predicts the shift of the SSFR distribution without changing its shape

Interpretation of Results

• Proposition:

- Increase of f_{a} is related to the transfer across bimodality; quick
- Decrease of SSFR is related to the *slower* fading of star formation
- Therefore $\Sigma_{1 \text{kpc}}$ -quenching is fast and M_{h} -quenching is slow
- Makes sense because:
 - Virial shock heating is expected to cut off accretion; remaining gas is expected to continue forming stars
 - Timescales can be ~ 2-3 Gyr or higher
 - Mechanisms that result in high $\Sigma_{\rm 1kpc}$ are expected to be violent (VDI, mergers)
 - Once gas is consumed M_h could play maintenance role of quenching (prevents new gas from falling in)

Can test these ideas in a SAM...

SAM test: GallCS

log M_{eri}

- Hatton+ (2003), Cattaneo+ (2007, 2008, 2013)
- The GalICS SAM implements quenching due to:
 - Virial shock heating (Halo):
 - All cold gas removed when $M_{\rm h}$ reaches $M_{\rm crit}$
 - Unrealistically strong (immediate)
 - Bulge quenching (Galaxy):
 - Accretion = 0 when $M_{\text{bulge}} > M_{\text{disc}}$ or B/T > 0.5
 - Bulge grows through mergers, disk instabilities
 - Mimics AGN feedback, wet inflows, morphological quenching

SAM test: GallCS

Quenching and Morphology: Satellites

The quenched fraction depends on $\Sigma_{1 \text{kpc}}$ in the outskirts of halos. The quenched fraction depends on M_{h} in the inner halo. Almost all satellites are quenched above $10^{12.8}$ M_{\odot}

SSFR

Quenching Results for Satellites

- Outer regions of haloes: $\Sigma_{1 \text{kpc}}$ correlates with f_q
 - Satellites only recently fell in; have not had time to experience the slow halo quenching
- Inner regions of haloes: $M_{\rm h}$ correlates with $f_{\rm a}$
- Quenched satellites have lower $\Sigma_{\rm 1kpc}$ than quenched centrals of the same mass.
 - Bulge light and mass are comparable
 - Disk mass is comparable but disk light is dimmer

Evidence that satellite quenching is disk fading without bulge growth