The Circumgalactic Medium of Dwarf Galaxies in Simulations

Jacob Vander Vliet New Mexico State University

> Santa Cruz Galaxy Workshop August 11th 2014

Chris W. Churchill, NMSU Sebastian Trujillo-Gomez, University of Zurich Elizabeth Klimek, NMSU Glenn G. Kacprzak, Swinburne Anatoly Klypin, NMSU

What is the CGM?

Diffuse gas reservoir surroundir a galaxy, extending out to a few hundre kpc

 Typically observed through absorption in quasar spectra

Difficulties

- Hard to interpret observations
- Density and thermal properties determined from Voigt profile fitting
- Depends on numerous assumptions
 - Absorbers are cloud-like (constant density, temperature)

- Use cosmological zoom-in simulations using ART by Trujillo-Gomez et al. (2013)
- Isolated dwarf galaxies
 Mvir = 3x1010 MO at z=0
- Run lines of sight through the gaseous halo
- Generate spectra based on:
 - Physical properties
 - Kinematics
 - Instrumental effects
- Fit Voigt profiles to spectra
- Compare the derived physical values of gas from fits to actual properties in the simulation

Churchill+ 2014, to be submitted

Distance along LOS

Gas with HI absorption does not give rise to OVI

Role of Stellar Feedback in CGM Structure

Low redshift (z<0.1)

Three Feedback Prescriptions:

- dwSN = Supernova Only
- dwALL_1 = Weak Radiation Feedback
- > dwALL_8 = Strong Radiation Feedback

Model	ϵ_{ff}	feedback	$ au_{ m tot}$	$P_{\rm PH}/{ m k_B}~(10^6~{ m K~cm^{-3}})$
dwSN	0.02	SNII+SW	-	0
dwRP_1_long	0.05	SNII+SW+RP	1	0
dwRP_10_long	0.05	SNII+SW+RP	10	0
dwRP_50_long	0.05	SNII+SW+RP	50	0
dwALL_1	0.05	SNII+SW+RP+PH	1	1
dwALL_8	0.02	SNII+SW+RP+PH	1	8
dwALL_40	0.02	SNII+SW+RP+PH	1	40
dwALL_8_long	0.02	SNII+SW+RP+PH	1	8

Trujillo-Gomez+ (2013)

Equivalent Width vs Impact Parameter

Vander Vliet+ (in prep)

Covering Fraction

Vander Vliet+ (in prep)

Summary

Low ionization ions tend to arise in cloud-like structures

- Voigt profile fitting appropriate
- High ionization ions tend to arise in diffuse structures
 - Apply Voigt profile fit with caution
- HI and OVI do not arise in the same gas
- Global properties of the CGM around dwarfs are relatively insensitive to stellar feedback detail
 - Exception: OVI

Papers:

- Churchill et al. 2014 to be submitted
- Vander Vliet et al. 2014 in prep
- Trujillo-Gomez et al. 2013 (arXiv: 1311.2910)