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Why are the neutron star merger and
core collapse supernova environments so sensitive
to neutrino flavor/spin physics ?

In a nutshell:

Core collapse supernovae are cold,
highly electron lepton number degenerate systems.

They are exquisitely sensitive to lepton number violating processes.

Macroscopic effects in SN physics or signal from:

flavor oscillations: very sensitive to neutrino mass hierarchy;

spin coherence: sensitive to Majorana/Dirac nature of neutrinos
& absolute neutrino masses



Calculating neutrino flavor transformation in the core collapse
supernova/merger environment is a vexing problem,

but one whose solution may lie at the heart of many aspects of
the physics of stellar collapse, nucleosynthesis, and the n signal.
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We need the fluxes and energy spectra of each flavor/type of neutrino
at all epochs and at all radii.



The state of collapse/merger modeling

simulations of core collapse supernovae are very sophisticated:
multi-dimensional radiation hydrodynamics;

Boltzmann neutrino transport, and detailed microphysics/EQOS . . .

Our understanding of the effects of nonzero neutrino mass
(flavor oscillations; spin flip), though numerically sophisticated,
is crude, and difficult to incorporate into the SN simulations,
probably even at the exascale.

There are unsettled issues in the story of supernova neutrinos.

One thing we can say for certain is that the current
collapse/merger simulations leave out many features of
neutrino mass and flavor/spin physics that we know are there



We must follow quantum mechanical phases and high frequency complex amplitudes
if we want to compute neutrino mass/flavor/spin physics.

This is an essential difference between neutrino flavor/spin astrophysical simulations
and conventional radiation hydrodynamics treatments.



The main take-away message from the experiments:

Neutrino energy (mass) eigenstates |v1), |v2), |v3)

are not coincident with the weak interaction (flavor) eigenstates

ve)s [Vu)s [vr)



Neutrino Mass: what we know and don’t know

_ 5mé ~ 7.6 x 107°eV?
We know the mass-squared differences:
~ 2.4 x 1073 eV?
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We do not know the absolute masses or the mass hierarchy:
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in medium it's a different story . ..

neutrinos can scatter on any particles that carry weak charge,
including other neutrinos, and this generates potentials that
can make the neutrinos change flavors

like photons acquire an index of refraction when traveling through glass

But, unlike for photons . . .

Potentials that govern how a neutrino changes its flavor
depend on the flavor states of neutrino: NONLINEAR



How Quantum Mechanical Systems Evolve — The Rules

when you make a measurement you have to get an eigenvalue
and system is “collapsed” into the corresponding eigenstate

—)
—)

two ways system can evolve in time:

SMOOTH/Continuous

Schroedinger-like evolution

state reduction (“wave function collapse”) because of a “measurement”
ABRUPT (scattering can be like a “measurement”)

The neutrino flavor problem in SN/Mergers
forces us to seek a unified treatment
of these time evolution modes



Simple Example: two-by-two [ve) = cosBlvy) + sinfvy)
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Quantum Kinetic Equations

iDf — [Hf} _ 0 [¢] — collision terms (f,f)
where f and f are 3 X 3 Hermitian density operators for neutrinos and antineu-

trinos, respectively, and ¢ is a 3 x 3 complex matrix encoding spin coherence.

and where H & U give neutrino interactions with matter and other neutrinos

separation of scales ??

Schroedinger-like:

L
i = H |¥) with |¥) = (e, Yy, ¥r) @ “high” density where

inelastic scattering dominates

Boltzmann equation

@ “low” density where
neutrinos propagate coherently

A. Vlasenko, G.M.F., V. Cirigliano (2013), arXiv:1309.2628



The advent of supercomputers has allowed us to follow
neutrino flavor transformation in core collapse supernovae,

including the first self-consistent treatment of nonlinearity stemming
from neutrino-neutrino forward scattering.

The results are startling. Despite the small measured
neutrino mass-squared differences, collective neutrino

flavor transformation can take place deep in the supernova envelope

Pushing the frontier of high performance computing
with a unique new kind of transport problem



Anisotropic, nonlinear quantum coupling of
all neutrino flavor evolution histories

Must solve many millions of coupled, nonlinear partial differential equations!!
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Toward Quantum Kinetics

(a) Effects of a small amount of direction-changing scattering
on the neutrino flavor transformation? — The "Halo”

(b) Spin Coherence: neutrino-antineutrino inter-conversion



J. Cherry, A. Friedland, G. Fuller, J. Carlson, A. Vlasenko, Phys. Rev. Lett. 108, 261104 (2012) 1203.1607

The Neutrino Halo

2
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Radius (km)

How large is the Halo effect for free

nucleons?
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J. E. Cherry,A. Friedland, G. M. Fuller, J. Carlson, and A.Vlasenko, Phys. Rev. Lett. 108,261 104 (2012), 1203.1607.



the Halo of scattered neutrinos converts the
coherent neutrino flavor evolution problem
from an initial value problem into

a boundary value problem

(quantum flavor information coming down from outer regions of star)

and moreover couples in nuclear composition
in a completely new way



the Halo converts the

neutrino flavor evolution problem
from an initial value problem into
a boundary value problem

(quantum flavor information coming down from outer regions of star)

and moreover couples in nuclear composition
in a completely new way

stability analyses suggest little effect from Halo during shock re-heating/accretion phase
(S. Sarikas, |I. Tamborra, G. Raffelt, L. Hudepohl, H.T. Janka PRD 85, 113007 (2012) 1204.0971;

A. Mirizzi & P.D. Serpico, PRD 86, 085010 (2012) 1208.0157) — But these studies leave out much of the halo
and do not capture the composition/inhomogeneous effects



O-Ne-Mg Core Collapse — very centrally-condensed,
so we can model the Halo with our initial value code:
qguantum mechanical information all coming from
below region of collective oscillations!

—h

~ Dispersion/de-coherence in Halo

causes neutrino trajectory-dependent swap energy,
which could have consequences for a

detected neutrino signal
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J. Cherry, J. Carlson, A. Friedland, G.M.F, A. Vlasenko, PRD 87, 085037 (2013). arXiv:1302.1159



Quantum Kinetic Equations A. Viasenko, G.M.F., V. Cirigliano (2013), arXiv:1309.2628
iD[F]—[H, F] - (AH Fy — Fy AH) = iC[F]
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Neutrino-Antineutrino inter-conversion

interesting analogy to Majorana neutrino spin precession in a real magnetic field

A. de Gouvea & S. Shalgar arXiv:1301.5637 showed that
standard model neutrino transition magnetic moment ( ~ 1024 Bohr magnetons)
could engender collective neutrino-antineutrino oscillations — require ~ 1012 Gauss fields

similar process with QKE spin coherence, but no magnetic field required
--- sensitive to Majorana/Dirac nature of neutrinos, absolute mass

neutrino-antineutrino conversion

potentially very important for nucleosynthesis

because the relative mix of neutrinos and antineutrinos
determines neutron-to-proton ratio



