Simulations of Planet Formation and Extrasolar Planets

Greg Laughlin
Dept. of Astronomy and Astrophysics, UCSC

Exoplanet Discovery vs. Mass -- Red=Transit; Gray=Radial Velocity

Mass Ratio -- Period Diagram for Satellites and Planets

The Computational Challenge: How do planets work and how did they form?

Hurricane Sandy on Earth

Day at which forecast loses useful skill (AC=0.6) N. Hemisphere 500hPa height calendar year means
-NCEP/GFS

Credit:, Peter Caplan, Yujian Zhu, Fanglin Yang
20 year improvement from better supercomputing, but also better ICs.

Exoplanetary Atmospheric simulations need:

- Fully 3D MHD, w/ chemical disequilbrium
- Frequency Dependent Radiative Transfer
-Time dependent insolation

A Dozen Years of Exoplanetary Weather Reports

arXiv.org > astro-ph > arXivastro-ph/0209227

 Saurch or
Astrophysics

Changing Face of the Extrasolar Giant Planet, HD 209458b

James Y-K. Cho, Kristen Menou, Brad Hansen, Sara Seager
(Submitted on 11 Sep 2002 (v1), last revised 12 Mar 2003 (this version, v2))

2002
arXiv.org > astro-ph > arXiv.1401.5815
Astrophysics > Earth and Planetary Astrophysics
Magnetohydrodynamic Simulations of the Atmosphere of HD 209458b
T.M. Rogers, A.P. Showman
(Submitred on 22 jan 2014)

Fig. 1.- Winds (shown as arrows) and temperature (colors) in our purely hydrodynamic models at three different radii within our simulations after 200 rotation periods.

Planets are ordered on the x-axis by the equilibrium temperature, Teq, computed with the assumption that they are $A=0$ blackbodies that reradiate from the full planetary surface. Measured secondary eclipse depths (in bands ranging from Kepler's optical bandpass to $8 \mu \mathrm{~m}$) are expressed as ratios of the observed eclipse depth in the band relative to the expected depth in the band under the assumption that the planet is a uniformly reradiating $A=0$ blackbody.

$$
T_{\mathrm{eq}}=\left(R_{\star}^{1 / 2} T_{\star}\right) /\left((2 a)^{1 / 2}\left(1-e^{2}\right)^{1 / 8}\right)
$$

Central Limit Theorem

The central limit theorem states that a sufficiently large number of iterates of independent random variables, each with a well-defined expected value and well defined variance, will be approximately normally distributed.

Fact: Protoplanetary Disks disperse in a few million years, and more often than not, they leave planets behind.

This part is new

NGC 2362
Fact: Planet formation is not particularly well understood.
Opinion: Large scale computations can offer modest insights.

Disk Galaxy: 101-10² orbits

Very Detailed observations

MHD Simulation by Lyra (2011), Not a photograph.

Protostellar Disk: 105-107 orbits

Even ALMA observations are not at all detailed by comparison

Planetary Rings: 1011-1012 orbits
Extraordinarily Detailed observations

Challenges

Details of Disk Gravitational Instability

Left image from Rice et al.

Meter-size barrier

Image from Ormel

Migration or in-situ

PEDIGREE OF MAN.

(Metazoa Evertebrata)

NIH.GOV

