
Cosmological Simulations: Approaching Exascale

Michael S. Warren
Theoretical Division

Los Alamos National Laboratory
msw@lanl.gov

The System of the World

∑
F = 0 =⇒ ṙ = 0

F = mr̈
F1 = −F2

F =
GM1M2

|r|2

..

i

.

j

Fij = GMi

N∑
j ̸=i

Mj
r̂
|r|2

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 2

Theory, Observation, Simulation

Ωm = 0.268, Ωb = 0.049,
Λ = 0.682, H0 = 67.0,
mν = 0.6, t0 = 13.82

Introduction
What is Exascale?
Algorithms
Implementation
Scientific Results
Conclusion

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 3

Single Processor Benchmarks
Processor MHz Gflop/s
Intel i860 40 0.035
Cray Y-MP 167 0.047
CM-5 32 0.050
Intel P3 500 0.186
Alpha EV56 533 0.242
Intel P4 2530 1.170
Intel P4 (SSE) 2530 6.510

Processor MHz Gflop/s
AMD Opteron 8435 2600 13.88
Intel Xeon E5430 (SSE2) 2660 16.34
PowerXCell 8i (1 SPE) 3200 16.36
AMD Opteron 6274 2200 16.97
Intel Xeon E5-2670 (AVX) 2600 28.41
NVIDIA M2090 (1 SM) 1300 68.56
NVIDIA K20X (1 SM) 732 149.53

Single core/SM performance in Gflop/s obtained with our inner loop benchmark.
(Monopole interaction, single-precision, 28 flops per interaction.

1990 1995 2000 2005 2010 2015
Year

106

107

108

109

1010

T
ra

n
si

st
o
rs

i860 Pentium Pro

Alpha EV56

Pentium III
Pentium 4

K8
Core 2

K10
Core i7

PowerXCellXeon E5

Bulldozer
Phi

Kepler
Moore's Law 1990-2013

1.8 year doubling time

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 4

Particle Number vs Time

1970 1980 1990 2000 2010
Year

102

103

104

105

106

107

108

109

1010

1011

1012

1013

P
a
rt

ic
le

 N
u
m

b
e
r

Gordon Bell Prizes

Direct Summation
P3M or AP3M
Parallel or Vector P3M
Parallel Treecode
Parallel TreePM
Hierarchical PM
Hashed Oct-Tree
HOT Pathfinder

1.5 year doubling time

The growth in scale of N-body simulations from 1970 to the present. Figure
originally from Springel (2005) for a subset of the data up to 2005.

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 5

Technology and Costs

2014 Cost ($) Description
8.0 · 10−18 GPU Peak flop
9.4 · 10−18 CPU Peak flop
5.2 · 10−18 CPU Peak flop energy
4.2 · 10−16 Memory store 1 second
1.7 · 10−14 Disk read
1.7 · 10−14 Local Network read
4.0 · 10−12 FedEx read
1.6 · 10−10 Disk store permanently
1.3 · 10−10 Wide Area Network read

Cost ($) Description
3.9 · 10−9 SSD store permanently
3.0 · 10−9 Disk dependent read
1.2 · 10−9 Google Drive store permanently
1.4 · 10−8 Amazon EBS store
1.2 · 10−7 PTF pixel
1.5 · 10−6 WAN dependent read
4.3 · 10−5 Photon (mR = 20 object)
2.0 · 10−3 Human labor for 1 second
1.0 · 101 Cost of 1 line of software

Table 1: Fundamental costs, data unit of 4-bytes

Scalable systems allow system optimization over a vast range (constrained
only by cost). Scalability requires careful management of concurrency, since a
serialized process can cost a factor of 102 − 106 (e.g. reading 4-bytes from disk
takes 4× 10−8 seconds but seek latency is 10−1 seconds.

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 6

Network Effects, Interfaces and Scaling

Timescale for change:

People 10,000 years
Language 100 years
SW Interfaces 40 years
Software 20 years
Hardware 5 years

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 7

Supercomputing is Inherently Interdisciplinary

Scientist Understand the System of the World (Is this hypothesis correct?)

Mathematician Understand patterns (Can I prove this conjecture?)

Computer Scientist Understand the theoretical foundations of information and
computation — Create complexity (Can a computer do this?)

Software Engineer Apply established knowledge to create computer programs
— Manage complexity (How do I implement this algorithm?)

..

Newton’s Method

... .

f ′(xn)

. xn.
xn+1

typedef float v8sf __attribute__ \
((vector_size (32)));

v8sf x = ppos0 - xp;
v8sf y = ppos1 - yp;
v8sf z = ppos2 - zp;
r2 = x*x + y*y + z*z;
rinv = t = _ia32_rsqrtps256(r2);
r2 *= rinv; /* Newton-Raphson */
rinv *= r2;
rinv -= three;
rinv *= t;
rinv *= half;

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 8

“Fast” Methods: Treecodes, FMM, Fast N-body

Appel (1981, 1985)
Barnes & Hut (1986)
Greengard & Rokhlin (1987)
Salmon & Warren (1994)
Recent review, Yokota (SC ’12)

Approximate,

F =

N∑
i

N∑
j

fij(r)

with a smaller number of terms
nN ≪ N 2, with controlled error.

Fi =

n∑
j

fj(r) +
n∑
j

∆fj(r)

For error on Fi to scale as ϵ
√
n,

∆fj(r) must be independent
and identically distributed (iid).

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 9

Hashed Oct-tree (HOT)

10110 10111

10100 1010110000

11010

10001

11110

11000 11001

11011

11101

11111

10010

11100

100

110 111

101

1

1100110

1010101

1011010

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 10

TreePM Approach

Ishiyama, Nitadori & Makino (SC ’12)

0.001 0.010 0.100

r / L

10
0

10
1

10
2

10
3

10
4

10
5

10
6

f

0.001 0.010 0.100

r / L

-0.04

-0.02

0.00

0.02

0.04

∆
f

/
f

Springel (2005)

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 11

Background Subtraction

..

+

.

a

.
b

.

c

An illustration of background subtraction, which greatly improves the
performance of the treecode algorithm for nearly uniform mass distributions
(such as large-volume cosmological simulations, especially at early times).

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 12

Time Stepping, Softening & Boundary Conditions
Symplectic leapfrog for cosmology.
Quinn, Katz, Stadel & Lake (1997)

H =
p′2

2a2
+

ϕ′

a

D(τ) ≡ r′t+τ = r′t + p′
∫ t+τ

t

dt

a2

K(τ) ≡ p′
t+τ = p′

t − ∇′ϕ′
∫ t+τ

t

dt

a

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fo
rc

e

F(r) = GM

r2 +ε2

Smoothing Kernels, ε=1

F0
F1
K1
K2
Plummer
C-Plummer
Spline

Ki kernels from Dehnen (2002)

Periodic BC, Challacombe (1997)

..

+

Vacuum BC

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 13

Convergence and Code Comparison

10-2 10-1 100

k [h/Mpc]

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

1.010

P
(k

)/
P

re
f(

k)

Np =10243, zi =49, L0 =1024 Mpc/h, 20483 FFT

2HOT, errtol=10−6 , dt/4 (reference)

2HOT, errtol=10−5 (standard parameters)

2HOT, errtol=10−4

2HOT, no DEC

2HOT, no 2LPTIC

2HOT, SphereMode 1

2HOT, no 2LPTIC, no DEC

GADGET2, ErrTolForceAcc=0.005

GADGET2, ErrTolForceAcc=0.005 PMGRID=2048

We demonstrate accuracy to 1 part in 1000 for the power spectrum.

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 14

The Mass Function of Dark Matter Halos

1011 1012 1013 1014 1015 1016

M200 [M¯/h]

0.95

1.00

1.05

1.10

1.15

N
(M

)/
T
in

ke
r0

8
DS2013 Mass Function, Planck Cosmology, N =40963

L0 = 1 Gpc/h
L0 = 2 Gpc/h
L0 = 4 Gpc/h
L0 = 8 Gpc/h
L0 = 4 Gpc/h, WMAP1

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 15

2014 INCITE Project

Probing Dark Matter at Extreme Scales

Michael S. Warren, Alexander Friedland, Ben Bergen (LANL)
Daniel Holz (University of Chicago)
Samuel Skillman, Risa Wechsler (KIPAC, Stanford)
Paul Sutter (Paris Institute of Astrophysics)
Matthew Turk (Columbia University)

80M Titan processor hours, 1 Petabyte of storage

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 16

The Exascale Challenge

From the perspective of a
programmer, an exascale
computer is a collection of
the worst ideas of the past 30
years.

Long vectors
Deep pipelines
Distributed shared memory
Hybrid architecture

Success at exascale depends much less
on hardware than it does on the human
interface to that hardware, a.k.a. software.

Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as cleverly
as possible, you are, by definition, not smart enough
to debug it.

–Brian Kernighan (1978)

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 17

The Meta-Problem: Software
Exponential growth (Moore’s Law) meets arithmetic growth (human capability).

The major cause of the software crisis is that
the machines have become several orders of
magnitude more powerful! To put it quite
bluntly: as long as there were no machines,
programming was no problem at all; when
we had a few weak computers, programming
became a mild problem, and now we have
gigantic computers, programming has become
an equally gigantic problem.

—Edsger Dijkstra, 1972

Single processors are ∼1,000 times faster than 20 years ago.
Parallel computers are ∼1,000,000 times faster than 20 years ago.
Software has limited progress so long we don’t pay attention any more.

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 18

Conclusion

We aim to perform over 3 zettaflops of computation on Titan in 2014.
Software is the New System of the World.
We need more and better software, not faster more complex hardware that
breaks established software interfaces.
A machine will run Linpack at an Exaflop around 2022. When a machine runs
something useful at Exascale depends on us.
Exascale is People.

Michael S. Warren — Approching Exascale — March 21, 2014 — Page 19

