Large-scale cosmological N-body simulations

A. Klypin (NMSU)

New requirements and new simulations

- The field of large-scale simulation is driven by ever increasing need for very accurate theoretical predictions.
- For surveys such as BOSS, DES, LSST, Euclid we need to predict clustering properties and lensing for many millions of galaxies in large cosmological volumes. Requirements at present: one percent for accuracy of power spectrum and correlation function of galaxies from 100 kpc to 100 Mpc. The same accuracy for weak lensing signal on 100 kpc - 20 Mpc scales.
- Connecting dark matter with galaxies: Halo Abundance Matching and Halo Occupation Distribution

More accurate predictions: more physics

- High resolution and accuracy means more physics and fewer assumptions
- I 5% difference in correlation function at 50Mpc is equivalent of changing Om from 0.27 to 0.3

Nuza et al 2012: BOSS vs Om=0.27

New requirements and new simulations

- High resolution and accuracy means more physics and fewer assumptions
- 2% difference in correlation function at 20Mpc is detection of 0.4eV neutrino

Tinker, Hasenkamp et al 2014

New Simulations: Multi Dark and Bolshoi

				\frown		
Box	σ_8	h	Np	m _p	Ω_{m}	resolution
2500	0.82	0.70	57G	2.07×10 ¹⁰	0.27	10kpch
2500	0.82	0.70	57G	2.22×10 ¹⁰	0.29	10kpch
2500	0.82	0.70	57G	2.36×10 ¹⁰	0.31	10kpch
2500	0.82	0.68	57G	2.35×10 ¹⁰	0.31	10kpch
1000	0.82	0.68	57G	1.5×10 ⁹	0.31	5kpc
400	0.82	0.68	57G	0.96x10 ⁸	0.31	Ікрс
250	0.82	0.68	8G	1.5×10 ⁸	0.31	Ікрс

A. Klypin (NMSU), F. Prada (Madrid), G. Yepes (Madrid), S.Gottlober (Potsdam), J.Primack(UCSC)

20 M cpu hrs 3e11 particles 5 PTb of stored data

Gadget and ART codes

5 trillion halos at different redshifts z=0-10

with properties such as :

mass, concentration, circular velocity shape, rotation Spherical Overdensity (BDM and RockStar) and FoF

Halos and some snapshots are publicly available

Testing Accuracy

Convergence of power spectrum and bias

Testing Accuracy

Friday, March 21, 14

Testing Accuracy of simulations

R (h⁻¹Mpc)

Vcirc>240km/s Comparison of correlation functions of halos with the same Vcirc limits 40 Dash - bigMD (2.5Gpch) 30 Full - MultiDark (IGpc) 5% blue dots - linear xi Cosmic variance on scales > 50Mpch 20 **Convergence for 120-150 particles** R¹.ª{(R) on scales 100kpc to 50 Mpch 10 9 Transition 8 two-halo one-halo 7 6 5 **Subhalos** 4 0.1 0.5 10 50 100 5 1

Testing Accuracy

Convergence of our results. ART and GADGET

Friday, March 21, 14

DATA products

- Halo properties: z= 0-10
- Subhalos
- DM density profiles for distinct halos
- Halo Abundance Matching => Stellar masses
- Fraction of DM particles for large number of snapshots
- Full set of DM particles for few snapshots: I.7TB/snap
- Merging trees: in works
- Routines to read data in parallel.

Final Points: Codes and Analysis

- It is easy to make useless very large simulations. Gadget can produce good quality simulations, but not with the standard (recommended) parameters.
- There are other accurate codes: e.g. 2HOT (Warren), HACC (Habib), RAMSES (Tessier), ART (Kravtsov).
- It does not matter what code to use: as long as it runs, run it. We compared ART and Gadget: produce the same results once gadget parameters are tuned.
- Most of effort and problems is in data analysis, not cpu

Final Points: DATA access

- There are some very good and very useful simulations done by different groups.
- As a community we are failing when it comes to dissemination and access to results of simulations. Very little is available for public.
- Only two groups provide access to their results: MultiDark and Millennium.
 Only MultiDark gives access to raw data.
- MultiDark.org is based at AIP, Potsdam. Hosts MultiDark +Bolshoi simulations. About 100TB of data mostly in SQL database.
- We need a center where users can access 'catalogs' of galaxies and raw data. It is not enough to upload data on a server. There should be staff, who looks at the data, tracks completeness, consults users, looks after the center. If planetary community can have a center, why cannot we?
- Very little hope that this will ever happen.

