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Cygnus A'is a classic FRIl  “[ ¢
double lobe radio source | "
age of Cygnus A event is ~107 yrs i
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three most recent jet-driven FRII lobe calculations
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radio polarization observations
hotspot field appears ~ toroidal but non-toroidal fields appear downstream
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assume a shockspot-driven flow: jet is not explicitly computed
this is OK since:
faint jet occupies a negligible volume

at each time step moving shockspot is injected with
(1) 1046 erg/s of relativistic CRs to fill Cygnus A radio cavity volume in 107 yrs
(2) 1 M /year of non-relativistic gas with v, -- for B to freeze onto
(3) toroidal hotspot field is reset to constant value: e. g. B,; ~ 100 uG

assume field, cosmic rays and gas in radio cavity all originate
iIn @ moving “shockspot” where the jet terminates

shockspot source zones move along the grid z-axis at constant velocity v:
V¢, = 60kpc/107yrs = 5800 km/s

cylindrical shockspot O'%y’fast shockspot wind ~0.2¢
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assume a purely toroidal field (B = By)

toroidal fields automatically satisfy divB =0
as they flow from the shockspot

poloidal fields (B,, B,) cannot be used in moving shockspot
sources without violating divB = 0 — true for all common
MHD codes (“constrained transport”)




after 107 yrs:
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Repeat with viscosity
t=10"yrs

KH is suppressed
with small viscosity
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radio emission from active FRII radio lobes
comes from boundary backflow; very limb-brightened

similar to y-ray IC-CMB emission in the Fermi bubbles



for first time: can connect observed B, and B, _ . siow

a toroidal field increases in decelerating flow u, L B
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but observed radio emissivity observed in Cygnus A
decreases along boundary backflow
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Solutions with toroidal magnetic field are unlike observations



non-thermal radio and X-ray emission near hotspot
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compare the incredibly powerful FRIIl hotspot in 4C74.26

500 kpc from its cluster center can observe both shockspot and offset
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subsonic communication determines shockspot-offset distance

consider 1D flow along jet direction

Mach number in frame of cavity-cluster contact discontinuity u,(z_,)

shockspot €OMt- pow shock

shock disc.
w,(2) — o (2eq) —

- wind
<1 Jet Zss > ch Zbow shock

cavity cluster Jgas

\

IS subsonic between the shockspot and cluster gas bow shock.

in our calculation the shockspot is required to move at constant velocity, but

@ in reality the shockspot shock can back off from the cavity boundary
until the recoil momentum of the shockspot wind
balances the jet momentum



some conclusions of shockspot-driven FRII evolution:

@® KH instabilities inside the radio lobe must be damped
to reproduce smooth radial variation of radio electron ages
viscous damping more likely than magnetic damping

@® radio synchrotron emission occurs in a narrow boundary backflow.
sync. emission in active radio lobes is limb-bright — as observed

@ the bright radio-X-ray “hotspots” in Cygnus A
are offset emission ahead of the post-shock shockspot
brightest radio sync. and X-ray SSC emission
occurs as shockspot wind compresses against cluster gas

@ Toroidal shockspot fields
evolve into lobe fields much larger than observed
sync. em. Increases along backflow — not observed

@® computed flow is subsonic between shockspot and cluster bow shock,
allowing the shockspot-offset distance to adjust to the jet momentum



recent developments:

® new terminology for “hotspot” structure:
“shockspot” (ss): region just behind jet shock, origin of cavity wind
“bright spot” (bs): luminous region where wind impacts cluster gas

@ accurate estimates of evolution of CR electron energy distribution n(y,r,t)
from ss to radio cavity of Cygnus A

@ accurate estimates of evolution of radio synchrotron emissivity e,
and flux from the radio cavity

@ results support random, small-scale magnetic field inside cavity

* electron pairs dominate Cygnus A jet and cavity synchrotron emission



evolution of synchrotron electrons from shockspot to cavity

electron energy distribution ; ;
on @
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P V-nuxnV-u=n(3/t)

n(y,r,t) = n(y,t)

YL
with expansion + sync. losses 7= ( T ,_)




equation for n(y,t):
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computed variation of e, and gas density in shockspot:
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correct observations of bs to the ss using hydro results:

observations of Cygnus A brightspot — a double power law:
n(vy) = min{ni(y), no(7y)|

where
ni(y) =K~y for v <74

; ~) T a2 Pl AT P2 C ~ ~
no(y) = KAL2PA™P2 for ~ >,

p1 = 1.5, po = 3.3, v, = 2000
. i L . Stawarz+07
K=Ky,=11x10"cm™ ( )

correction from brightspot to shockspot values:
Koo = (€cs/€cns) Kps = 138K = 1.49 x 107* em ™

By = 0.28B)s = 0.28 x 220uG = 621G
evolution of double power law:

n(vy,t) = minn(py,7v,t), no(po, v, t)]



calculate radio synchrotron emissivity in radio lobe
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radio synchrotron emissivity profiles observed in Cygnus A
at 1.345 GHz along boundary backflow
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computed radio synchrotron emissivity profiles for toroidal B:

emissivity at 1.345 GHz at various z (kpc)
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computed radio synchrotron emissivity profiles for random B:

— 2/3
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computed radio synchrotron emissivity profiles for random B:
emissivity at 1.345 GHz at various z (kpc)
solution 1

—_ 2/3
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. solution 2
Ler = 10% erg/s and Vg, = 0.2V
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random B implies subgrid (sub-kpc) field structure



best evidence yet for electron-pair dominance in FRII jets :

Solution 2 L., = 2.6 x 10% erg/s and Vi, = Vi

Find current energy density of radiating electrons in shock

spot from energy density observed in bright spot:

X
2 ; . =8 3
€ ssrad = MC” / YNgo(V)dy = 2.9-2.5x107° erg cm™”

fmin

for (unobserved) cutofl enerey ~,,;, = 1 — 100

Here n.. o< I with

24

-~ - <6Z:sx> - a1 T .
K=K, ="Ky s =231 K, s crecm

<6Z:bx>

Dynamically computed ss energy density at time 10 Myrs:

5 ¢ 1Nn=8 .. =3
Cr s = 2.5 x 10 ere

all relativistic particles in the shock spot are electron-pairs,
consistent with an electro-magnetic origin of the jet



more conclusions:

@® Accurate calculation of radio synchrotron everywhere inside the radio lobe
from observed energy spectrum in brightspot (“hotspot”)

@ toroidal (and B,) fields resolved by the ~kpc grid increase
exponentially along the backflow, exceeding the observed
field and with too much radio emission

@ subgrid (sub-kpc) scale random fields have uniform fields
similar to those observed (B ~ 20 uG)
and radio synchrotron emission that agrees with observations

@ the energy density of radiating relativistic electrons in the post-
shock region agrees with the energy density required to
inflate the Cygnus A cavity --- this indicates that the jet is also
dominated by relativistic electron pairs



