Maintaining dead galaxies with stellar heating

Charlie Conroy Pieter van Dokkum

Why do these galaxies exist?

The Standard Lore: "AGN Feedback"

Quasar Mode

Merger-driven. Drive out/ exhaust gas supply

Radio Mode

Energy from BH maintains a hot atmosphere Related to the "cooling flow problem" in clusters

Binney & Tabor 1995 Ruszkowski & Begelman 2002 Springel et al. 2005 Croton et al. 2006 Hopkins et al. 2008 etc. etc.

Radio Mode Feedback = "Maintenance Mode"

Croton et al. 2006

Recent Clues

- SF quenching strongly correlated with galaxy structure (stellar density)
- Lots of massive quiescent galaxies at z>2

Bell et al. 2012

0.2

0.6

Rank

0.4

0.8

0.0

1.3 < z < 2.2

0.8

0.6

0.4

0.2

0.0

0.0

Quiescent fraction

Kauffmann et al. 2003

All Stars Die

- Stars less than <~8 M_{sun} die quietly, ejecting their outer envelopes in a super-wind phase
- They evolve to **post-AGB** stars, in many cases passing through a PNe phase

Overview of Post-AGB stars

 $\log T_{eff}$ (K) Jieun Choi et al. in prep

An Example

Typical quiescent galaxy at z=2:

• $M_{star} = 10^{11} M_{sun}$, $\sigma = 300 \text{ km/s}$, $R_e = 1.5 \text{ kpc}$; $M_{halo} = 10^{13} M_{sun}$

Heating Sources (from pAGB stars):

- Ionizing luminosity = 10^{41.7} erg/s
 - Taking L_{bol} =10⁴ L_{sun} , T_{eff} =10⁵ K
 - Consistent with detailed SPS models
- Wind heating = $3/2 \text{ dM/dt } \sigma^2 = 10^{41.3} \text{ erg/s}$
 - dM/dt \sim 1-2 M_{sun}/yr

Cooling Source:

- Radiative Cooling = 10⁴¹ erg/s
 - Assuming 10% gas fraction, in hydro equil with NFW halo, T_{vir}=10^{6.8} K
 - Computed within the cooling radius = 30 kpc

History

- Post-AGB heating considered previously in the context of the origin of hot gas in ellipticals
 - Mathews & Baker 1971
 - Lake & Schommer 1984
 - Mathews 1990
 - Brighenti & Mathews 1996, 1997

Conroy & van Dokkum, submitted

Conroy & van Dokkum, submitted

McDonald et al. 2011

Comparison to SNe Ia heating

- Heating from SNe Ia's comparable to pAGB stars at z=2
- Order of magnitude smaller at z~0

Consistent with observed SEDs at z~2

Planetary Nebulae vs. Galaxy Dispersion

Coccato et al. 2009

HI Disks in ETGs with no SF: heated by pAGB stars?

NGC 3945 (D)

Serra et al. 2012

Spatially-extended Emission Lines in ETGs

Some Implications & Comments

- 1. Strong correlation between quenching and stellar density (Σ_1 ; μ), velocity dispersion (σ)
- 2. Little intrinsic redshift dependence (but requires a hot halo)
- 3. No "feedback", just heating
- 4. Fewer PNe in central regions of quiescent galaxies; naked UV sources

But: Radio AGN probably do *something!*

Conclusions

- 1. Stellar heating from post-AGB stars offers a possible alternative to "radio mode" AGN heating
- 2. This heating source *must exist*, only question is how important in detail
- 3. Numerous observational implications; easily testable
- 4. Straightforward to implement into hydro simulations in an approximate way
 - Need to study the interaction of the winds/ionization and diffuse gas in detail (e.g., Bregman & Parriott)
 - Big uncertainty: lifetime of post-AGB phase. Constrainable via observations of nearby galaxies