

# Building Late-Type Spirals by In-Situ and Ex-Situ Star Formation: Eris' Stellar Halo

# ANNALISA PILLEPICH UCSC

with Piero Madau, Javiera Guedes, Mike Kuhlen, Lucio Mayer, Valery Rashkov, Sijing Shen, Alis Deason, Connie Rockosi, and all the Gasoline Team.

Eris: In-Situ vs Ex-Situ Star Formation

Annalisa Pillepich, Santa Cruz 2013/08/16

## **The Simulation**

See Rashkov, Pillepich, et al. 2013 and later in this talk

Eris is a simulation of a "slightly light" Milky Way galaxy.



Mass Resolution: DM =  $9.8 \times 10^4$  M<sub>o</sub>, GAS=  $2 \times 10^4$  M<sub>o</sub>, STARS=  $6 \times 10^3$  M<sub>o</sub> Force Softening: 124 pc

## **The Simulation**

Eris is a good analog of our Milky Way...



#### **The Prescriptions:**

radiative cooling of the gas

(Compton, atomic, low T metallicity-dependent)

- heating from cosmic UV Background
- Supernova feedback, a' la Stinson:2006 i.e. thermal feedback from SN Type Ia and Type II  $(\varepsilon_{SN} = 0.8)$
- One Only NW realization Specific Subgrid choir • Star Formation a' la Governato 2010:
  - threshold  $n_{SF} = 5$  atoms/cm3
  - efficiency  $\varepsilon_{SF} = 0.1$
  - IMF: Kroupa et al. 1993
- NO AGN feedback

Annalisa Pillepich, Santa Cruz 2013/08/16



#### In-Situ Stars, broadly speaking

- In-Situ stars form within the **bulge** and the **disk**...
- They tend to be found at z=0 not far from their birth sites.
- OK THE LORNARION HISTORY • They can be both young and old, metal poor or metal rich...



# Ex-Situ Stars, broadly speaking



- Ex-Situ stars form in outer (dwarf) galaxies, subsequently accreted...
- After accretion, satellite stars get stripped, mixed, and end up populating the host galaxy
- Their properties reflect the SF histories of the satellites, but people tend to think they are mostly old stars and metal poor...





## **Ex-Situ Stars, broadly speaking**

Ex-Situ stars are the main responsible for the existence of the **stellar halo**... They appear in streams, shells, plumes, debris, and umbrellas :-)



### Not a new story, of course...

#### Theory/Simulations:s

#### Helmi & White 1999, Johnston et al. 2008, ....



Abadi et al. 2006 Zolotov et al. 2009 Cooper et al. 2010 Tissera et al 2013





#### Observations:



#### ... But outstanding questions remain

- I. What is the relative importance of accreted, in-situ and satellite stars as a function of distance?
- 2. How does this balance depend on halo mass?

NOT THE RIGHT

- 3. For MWs, how many satellites contributed to the stellar halo? QUESTION...
- 4. Are there differences between stars of surviving satellite and debris stars of disrupted accretion events?
- 5. Where shall we find the oldest stars?
- 6. Are the oldest stars the most metal poor?
- 7. How all these fact depends on the specific merger and star-formation histories?
- 8. Can we predict the properties of the stellar halo i.e. interpret observations? How smooth and lumpy? Gradients in ages, metallicities, density profiles? INTENSE OBSERVATIONAL ACTIVITY

### The in-situ vs ex-situ balance for Galactic Archeology



# **In-Situ vs Ex-Situ Stars: our operational definitions**

#### Steps:

- I. Halo Finder output at every available snapshot
- 2. Identification of Stars belonging to the MW at z=0
- 3. Question: to which halo/subhalo did every MW star belong to at its formation time?

#### Answers:

MW, no bound structure, a halo external to the MW, a subhalo within the MW radius



Careful: Different simulators use different definitions, they cut away pieces of stellar populations, .... Comparisons are tricky!

#### <u>Eris at z=0</u>

#### SPHERICALLY AVERAGING...

|                       | Stellar Mass $[{\rm M}_{\odot}]$ | Fraction to Total<br>[%] |  |
|-----------------------|----------------------------------|--------------------------|--|
| All                   | $3.9 \times 10^{10}$             | 100                      |  |
| In-Situ               | $3.0 	imes 10^{10}$              | 77.6                     |  |
| Ex-Situ               | $8.6 \times 10^9$                | 22.3                     |  |
| Ex-Situ:preAccretion  | $2.9 	imes 10^9$                 | 7.4                      |  |
| Ex-Situ:postAccretion | $5.7 \times 10^9$                | 14.9                     |  |
| Ex-Situ:smooth        | $8.1 \times 10^{9}$              | 21.0                     |  |
| Ex-Situ:satellites    | $5.1 \times 10^8$                | 1.3                      |  |
|                       |                                  |                          |  |



- GLOBALLY, 22% OF ERIS STELLAR MASS HAS BEEN ACCRETED VIA SATELLITES
- EX-SITU STARS DOMINATE THE STELLAR DENSITY ONLY AT LARGE RADII (> 20 kpc)



• THE STELLAR HALO (>15 kpc) IS NOT SPHERICALLY SYMMETRIC AT ALL

## Eris at z=0, component by component

POSITION-BASED MORPHOLOGICAL DECOMPOSITION The only kinematically derived quantity is the Angular Momentum of the (kinematic) stellar disk, to fix the axes.

Bulge: sphere of 1.5 kpc Disk: cylinder of height +-1.5 kpc and radius <u>15kpc</u> (excluding the bulge) Inner Halo: shell within 5 and 20 kpc (excluding extended disk) Outer Halo: shell beyond 20 kpc

|                                                                        | Milky Way                                                     | Disk                            | Bulge                           | Inner Halo                | Outer Halo                      |
|------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------|---------------------------------|
| Total Stellar Mass                                                     | $3.9\times10^{10}~M_{\odot}$                                  | $1.9\times10^{10}\rm M_{\odot}$ | $1.5\times10^{10}\rm M_{\odot}$ | $7.8\times10^8~M_{\odot}$ | $1.7\times 10^9  \rm M_{\odot}$ |
| In-Situ Fraction<br>Ex-Situ Fraction<br>Ex-Situ Fraction In Satellites | $\begin{array}{c} 78 \ \% \\ 22 \ \% \\ 1.3 \ \% \end{array}$ | 83 %<br>17 %                    | 84 %<br>16 %                    | 30 %<br>70 %              | 5%<br>95%<br>21%                |

- SATELLITE GALAXIES DEPOSIT STARS IN ALL THE MW COMPONENTS
- THE STELLAR HALO IS MAINLY COMPOSED OF EX-SITU STARS
- Interestingly, there are more ex-situ stars in the disk than in the whole halo!

20100

#### **Cool Point #1: ex-situ stars at small distances**

THERE ARE LOCAL ENHANCEMENTS OF EX-SITU STARS AT SMALL DISTANCES: EX-SITU DISK
MORE THAN 2/3 OF THE EX-SITU STARS ARE POST-ACCRETION!



### **Cool Point #2: in-situ stars at large distances**



I. THERE ARE LOCAL ENHANCEMENTS OF IN-SITU STARS AT LARGE DISTANCES

2. IN-SITU STARS HAVE TRAVELED DURING THEIR LIFE AT EVEN LARGER DISTANCES THAN WHERE WE FIND THEM TODAY



#### In-situ vs Ex-situ Stars as a function of time



- SMALLER GLOBAL IN-SITU FRACTIONS AT THE PEAK OF THE ACCRETION HISTORY
- BUT ALSO IN-SITU STARS UP TO FARTHEST DISTANCES

### **Concluding**



In-situ vs Ex-situ Contributions Geometry of the stellar halo Property distributions of the two populations

are the results of the **balance among different time-scales** 

(cadence and duration of SF history and accretion history, stellar mixing time scales, time of last luminous accretion event)