Radiative Feedback and the Low Efficiency of Star Formation in Cosmological Simulations

Daniel Ceverino (UAM, Madrid)

Anatoly Klypin, Elizabeth Klimek, Sebastian Trujillo-Gomez, Christopher Churchill (NMSU); Joel Primack (UCSC) , Avishai Dekel (HUJI) Santa Cruz, 2013

Low efficiency of galaxy formation on low-mass halos at high-redshift

Behroozi+12

Low efficiency of galaxy formation on low-mass halos at high-redshift

Star formation and galaxy formation is a rather inefficient process in M_h≈10¹¹ Ms halos at any redshift

Which physical process drives this low efficiency?

Behroozi+12

Beyond supernova feedback

Brook+12

Aumer+13

Low galaxy efficiency

Brook+12

But ... low resolution for accurately following radiative effects (0.3-0.15 kpc) tuning of feedback parameters a meaningful physical model or a trick to compensate resolution defects?

Galaxy formation simulations done with ART

- AMR code: HYDRO-ART (Kravtsov et al 1997, Kravtsov 2003)
- Gas Cooling, Star Formation, Stellar Feedback (Ceverino & Klypin 2009; Ceverino, Dekel and Bournaud 2010)
 - Cooling below 10⁴ K (minimum temperature of 300 K).
 - Thermal feedback + runaway stars.
- Radiative Feedback (Ceverino et al. 2013,
 - ArXiv 1307.0943)
- Zoom-in simulations: 15-30 pc resolution

Radiative feedback

Rosette Nebula

No Supernova explosion yet Stellar winds Thermal pressure Radiation pressure from ionizing photons

Typical resolution of our zoom-in, cosmological simulation: ~ 20 pc

 At low column densities

 $P_{rad} \alpha (1-exp(-\tau))$

- Optically thin
- No effect from radiation
 pressure

- At high column densities
- Add pressure

$$\mathsf{P}_{\mathsf{rad}} = \mathsf{L} / (\mathsf{R}^2 \mathsf{c})$$

 $L = M_* \Gamma$

 Γ = cte for 5 Myr

For column densities >10²¹ cm⁻²

No free parameters

Photoionization & photoheating

VELAs

~35 zoom-in simulations
 15-30 pc reso
 M_{DM}=8 10⁴ Ms
 M_{*}=10³ Ms
 z=1-3

10¹¹ Ms/h < M_H < 10¹² Ms/h Vc_max =100-200 km/s

Low Star Formation Efficiency

 Radiation pressure reduces SFR and stellar mass by a factor ~3

SFR~1 Ms/yr

For $M_h \sim 10^{11}$ Ms at $z \sim 3$

Behroozi+12

Gas distributions

Stars face-on

Without radiation pressure

With radiation pressure

Phase Diagrams

Without radiation pressure

With radiation pressure

Summary

- The low efficiency of star formation in lowmass halos at high redshift is driven by radiation pressure
- Radiation pressure controls the highdensity tail of the density distribution
- Results are stable against model variations
- Photoionization and photoheating can prevent cooling in the log(T)=4-4.5 range

The End