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Gas overcooling Problem

• Gas cools into DM halos and form stars.
• Gas cooling too efficient - gas overcooling problem.
• Solution - dump energy from stars, AGN etc into the gas (a few
tweaks included).
◦ Thermal Feedback Models (Stinson+2006,2013)
◦ Kinetic Feedback Models (Vogelsberger+2013, Puchwein+2012,

Davè+2008)

• Are we calculating gas cooling correctly?
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Gas cooling in presence of radiation field

• Ionized gas cools
more slowly

• Local sources produce
ionizing radiation

• This will affect gas
cooling in galaxies
◦ Cantalupo 2010
◦ Gnedin & Hollon

2012

Figure: Cooling curves for neutral (blue) and ionized gas(red)
- Gnedin & Hollon 2012
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Ionizing radiation sources

• Radiation from young O&B
stars, convolved with the
SED of shock heated gas
from SNe (Cervino+2002)

• UV photons from Old stellar
population due to
accumulation of post-AGB
stars (Bruzual & Charlot
2003)

• Haardt & Madau 2005 UV
background

• Photon Flux
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Change in cooling

• Reduction in
cooling rate /
Increase in
cooling time of
gas

• Increase in the
equilibirum
temperature of
the gas

• nH = 0.01cm−3, Z = 0.1Z�, Distance = 10 kpc
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Basic Assumptions
• The surrounding hot halo gas is optically thin

◦ 95 % of flux in Lyman Limit frequencies absorbed by birth coccoon of new
stars

◦ Old stars are considered field stars and hence the escape fraction is unity
◦

Fν (r) =
Fν (r1)r2

1
r2 (1)

• Group radiation sources together
◦

Fν ,tot = Fν ,HM +
SFR ×Fν ,ns

r2 +
Mos ×Fν ,os

r2 (2)

◦ The distance r is directly taken form the tree calculation (for more
information see Woods et al. in prep.)

• Non equilibrium H,He + equilibrium metals (from Cloudy v10), ala Shen et al.
2010, Vogelsberger et al. 2013
◦

Λtot = ΛH,He +
Z
Z�

ΛZ� + ΛCompton (3)
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Test Particle Runs

• New Stars
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Simulation of MW galaxy

• Halo mass - 7×1011 M�

• SNe Feedback + Early Stellar feedback - Stinson+2013
• Gas particle mass - 2×105 M�, Softening - 310 pc
• Metal cooling

◦ Only UV background - HM run
◦ UV background + local photoionizing radiation sources - HM+LPF

run
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Star Formation History
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Rotation Curves
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Phase Space Diagrams
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Figure: HM
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HI column density maps

Figure: HM Figure: HM+LPF
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Gas Accretion rate
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Conclusions

• Novel new method introduced to include the effects of local
photoionizing radiation field in cosmologocal simulations

• MW mass galaxy simulation shows
◦ 67% reduction in SFR at late times
◦ ~ 40% reduction in total stellar mass of galaxy
◦ Slowly rising rotation curves

• Two different effects of LPF as seen in phase diagram
◦ Stops gas accretion onto the disk thereby reducing fuel for star

formation - Preventive feedback
◦ Stops gas in the disk from getting cold - stabilising the disk through

pressure support

• Less gas accretion onto the disk due to
◦ Gas highly ionized due to local radiation field
◦ Decreases gas cooling rate and increases halo temperature
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Take Home Message

Local ionizing radiation is quite important and
must be considered in models of galaxy
formation
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