Impact of H₂ star formation model & Reionization of the Universe

+ AGORA

Robert Thompson (Arizona/UNLV)(H2 SF model, DISPH)
(AGORA Run I & 2)Jason Jaacks (UT Austin/UNLV)(AGORA Run I & 2)
(Gal SMF/LF, SF history)Jun-Hwan Choi (UT Austin/Kentucky)(SF/Wind model)Hide Yajima (Edinburgh/Penn State)(Radiative Transfer)

Outline

 Motivation: High-z galaxy formation & Reionization in the concordance ACDM model `Standard' vs. H₂-based star formation (SF) model Galaxy Mass/Luminosity Functions -faint-end slopes & SF duty cycle **Radiative Transfer & Escape Fraction Reionization of the Universe**

Cosmic Timeline

http://www.roe.ac.uk

Observations are rapidly approaching the first galaxies

What are the sources responsible for reionization?

Computational Cosmology

Self-consistent galaxy formation scenario from first principles (as much as possible)

 Current cosmological simulations lack the *spatial* and *mass* resolutions to resolve the small scale processes which govern star formation (SF) within the ISM.

'Pillars of Creation' in Eagle Nebula (M16)

 Thus we need a subgrid model for SF

IC5146 molecular cloud

Filament thickness: ~0.1 pc $(N_H \gtrsim 10^{22} \text{ cm}^{-2})$

(~sonic scale below which interstellar turbulence becomes subsonic in diffuse gas)

Herschel 70-500µm (Arzoumanian+11)

Sub-grid Multiphase ISM model

H₂ dependence of SF

* SF tightly correlates with molecular gas (e.g., Bigiel+ '08)

 Spread can be understood as metallicity dependence (Krumholz+ '09)

SPH implementation

- We modify the multiphase model to include the H₂ mass fraction.
- Change *t*_{*} to the *free-fall time* of material available to create stars.
- Account for SF efficiency via ε_{ff} = 0.01 (Krumholz & Tan 2007, Lada et al. 2010).

$$\dot{\rho}_* = (1 - \beta)\epsilon_{ff} \frac{\rho_{H_2}}{t_*}$$
where
$$t_* = t_{ff} = \sqrt{\frac{3\pi}{32 G \rho_{H_2}}}$$

See Robert Thompson's talk for more details.

(cf. Christensen+; Gnedin+, Robertson+....)

SF threshold for H₂ formation (natural metallicity-dependence)

What do we do about n_{th} in AGORA?

COSMOLOGICAL SPH SIMULATIONS

 modified GADGET-3 SPH code (Springel '05+α) radiative cooling/heating (w/ metals), SF model, SN & galactic wind feedback with multicomponent variable velocity (MVV) model, self-shielding correction (KN+10)

• Advantage over zoom-in runs: larger statistical samples of galaxies

Run Name	Box Size $[h^{-1} \text{ Mpc}]$	Particle Count DM & Gas	$m_{ m dm} \ [h^{-1} { m M}_{\odot}]$	$m_{ m gas}$ $[h^{-1} { m M}_{\odot}]$	$\epsilon [h^{-1} ext{ kpc}]$	${\scriptstyle z_{ m end}\ m H_2}$	$z_{ m end}$ Fiducial
N144L10 N500L34 N600L10	$10.00 \\ 33.75 \\ 10.00$	$\begin{array}{l} 2\times144^3\\ 2\times500^3\\ 2\times600^3\end{array}$	2.01×10^{7} 1.84×10^{7} 2.78×10^{5}	4.09×10^{6} 3.76×10^{6} 5.65×10^{4}	2.77 2.70 0.67	$3.00 \\ 3.00 \\ 6.00$	3.00 - -
N400L10 N400L34 N600L100	$10.00 \\ 33.75 \\ 100.00$	$\begin{array}{l} 2\times400^{3}\\ 2\times400^{3}\\ 2\times600^{3} \end{array}$	9.37×10^{5} 3.60×10^{7} 2.78×10^{8}	1.91×10^{5} 7.34×10^{6} 5.65×10^{7}	$1.00 \\ 3.38 \\ 4.30$	$6.00 \\ 3.00 \\ 0.00$	$5.50 \\ 1.00 \\ 0.00$

Fiducial: Pressure-based SF model

Schaye & Dalla Vecchia '08 Choi & KN '09, '10, '11

Thompson, KN+ '13

Jaacks, Choi & KN '12a

Redshift Evolution of LF & MF

LFs with H₂-SF model

Kuhlen+ '12 (cf. O'Shea, KN+'05: Enzo-Gadget comparison)

Modified Schechter Func.
$$\Phi(L) = \phi^* \left(\frac{L}{L^*}\right)^{\alpha} \exp\left(-\frac{L}{L^*}\right) \left[1 + \left(\frac{L}{L^t}\right)^{\beta}\right]^{-1},$$
 Loveday+ '97

Future test with JWST.

of low-mass gals is significantly reduced at M_{uv}>-16

SFR fcn w/ H₂-SF model

Agrees well with current obs constraints at z=6 & 7 (Smit+'12).

SFR fcn provides more direct comparison btw sim & obs.

Stellar-to-Halo Mass Ratio (SHMR)

Specific SFR (sSFR) vs. Redshift

For $M_{star} \sim 10^{10} M_{\odot}$ galaxies.

SFRD: Sim. vs Obs.

Reionization of the Universe

Low mass gals dominate the contrib. to the ionizing photons & they can maintain ionization to z~6

Reionization of the Universe

Low mass gals dominate the contrib. to the ionizing photons & they can maintain ionization to z~6

Escape Fraction of Ionizing Photons

Authors	f _{esc,ion} (M _{halo})	Method		
Gnedin+ '09	Very low 10 ⁻⁵ -10 ⁻¹ , 10 ¹¹ -10 ¹² M⊙	AMR, 6Mpc box, 65pc res, OTVET, z=3	Scale in kpc	
Razoumov+'09	I.0-0.0, 10 ⁸ -10 ¹¹ M⊚	SPH, 6Mpc box, ~0.5kpc res, resim 9 gals, z=4-10	Scale in kpc 0.00 3.00	
Wise & Cen +'09	Large scatter & time evol. 0-0.4, \longrightarrow 10^{6} - $10^{9}M_{\odot}$	AMR, 2 & 8Mpc box, 0.1pc res, z=8	E 10 ⁻⁵ 10 ⁰ 10 ⁻¹ 10 ⁻² 10 ⁻²	
Yajima+ '09	0-0.5, with time	Eulerian (Mori & Umemura '06 sim, single system, t=0-1Gyr)	10 ⁻³ (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
Yajima, Choi, KN 'I I	I.0-0.0 10 ⁹ -10 ¹² M⊙	SPH, 10Mpc box, ~0.5kpc res, z=3-6 100s of gals.		
Good topic for AGORA - High-z WG?				

Yajima, Choi, KN 'I I

Authentic Ray Tracing method

(Nakamoto+ '01, Illiev+ '06, Yajima+ '09)

fesc as a function of Mhalo & redshift

- Decreasing f_{esc} as a func
 of M_{halo} --- roughly
 consistent with Razoumov
 +'09; but different from
 Gnedin+'09, Wise & Cen '09
- Simulations suggest that the Universe can be reionized by the star-forming galaxies at z=6 if C≤10.
- High f_{esc} for low-mass gals helps.

(cf. Gnedin+, Paardekooper+, Razoumov+, Wise&Cen)

Yajima, Choi, KN '11

Average SF history down @ z=6-10

- Galaxy sample divided according to M★
- SFR \propto exp(t/T)
- T~70 Myr to 200Myr for low to high mass galaxies
- Early galaxy growth phase driven by gravitational instability

(cf. Finlator+, de Barros+, Schaerer+, Stark+)

Jaacks, Choi & KN, 12b

Stochasticity of Star Formation

- 10 Myr bins
- Merger/gas infall/ FB
- What is the duty cycle of SF?

Fraction of time that a gal surpass the SFR threshold during z₁<z<z₂

SFR threshold $\approx M_{uv}$ =-18 mag

Duty cycle of SF

Sharp transition btw $\log M_{\star} \sim 7.0-9.0$ with a

moderate scatter.

Good fit by the Sigmoid func:

$$DC(M_s) = \left[\exp\left(\frac{a - \log(M_s)}{b}\right) + 1\right]^{-1}$$

Jaacks, Choi & KN, 2012b

Keita's AGORA website

http://www.physics.unlv.edu/~keitee/Agora.html

Project AGORA University of Nevada, Las Vegas

Contributors:

Keita Todoroki, Robert Thompson, Ken Nagamine

<u>RUN1</u>

Summary: AGORA-RUN1-results (PDF)

Α	6Mpc/h	<u>3Mpc/h</u>	1Mpc/h	profile
В	6Mpc/h	<u>3Mpc/h</u>	1Mpc/h	profile
С	6Mpc/h	<u>3Mpc/h</u>	1Mpc/h	profile
D	6Mpc/h	<u>3Mpc/h</u>	1Mpc/h	profile

Redshift	0	0.5	1	2	3	6	9	15	19
Snapshot (RUN1-A)	<u>snap</u>	<u>snap</u>	<u>snap</u>	snap	snap	snap	<u>snap</u>	snap	snap

RUN2

Summary: AGORA RUN2 (PDF)

Γ	6Mpc/h	<u>3Mpc/h</u>	1Mpc/h	profile
_				

Flash files for comparison with RUN1-A:

6Mpc/h 3Mpc/h 1Mpc/h

AGORA RUN-1

DM-only cosmological 'zoom-in' runs: May, 2013

Labels	RUN1-A	RUN1-B	RUN1-C	RUN1-D	
	withPM, switching at z=9	withPM, no switching	withPM, no switching	withoutPM, no switching	
Softening length [kpc/h]	3.22 = comoving 0.322 = physical	0.322 = comoving = physical	0.322 = comoving = physical	0.322 = comoving = physical	
Total CPU hours	633	806	980	5272	
Makefile options	<pre># TreePM Options OPT += -DPMGRID=256 #OPT += -DGRIDBOOST=2 #OPT += -DASMTH=1.25 OPT += -DRCUT=4.5 OPT += -DPLACEHIGHRESREGION=2 OPT += -DENLARGEREGION=1.2</pre>	# TreePM Options OPT += -DPMGRID=256 #OPT += -DGRIDBOOST=2 #OPT += -DASMTH=1.25 OPT += -DRCUT=4.5 OPT += -DPLACEHIGHRESREGION=2 OPT += -DENLARGEREGION=1.2	# TreePM Options OPT += -DPMGRID=256 #OPT += -DGRIDBOOST=2 #OPT += -DASMTH=1.25 #OPT += -DRCUT=4.5 #OPT += -DPLACEHIGHRESREGION=2 #OPT += -DENLARGEREGION=1.2	<pre># TreePM Options #OPT += -DPMGRID=256 #OPT += -DGRIDBOOST=2 #OPT += -DASMTH=1.25 #OPT += -DRCUT=4.5 #OPT += -DPLACEHIGHRESREGION=2 #OPT += -DENLARGEREGION=1.2</pre>	
Halo center *	0.486773, 0.525076, 0.491379	0.486766, 0.525132, 0.491333	0.486478, 0.525153, 0.491899	0.484387, 0.525912, 0.492511	
Mvir [M⊙]	1.675e11	1.682e11	1.661e11	1.728e11	
Rvir [kpc]	144.3	144.5	143.9	145.6	

* Halos identified by Rockstar 0.99 beta

Other simulation parameters used for our RUN-1:

levelmax in MUSIC parameter	12
Mass resolution in the finest level	2.37267e5 Msun/h = 3.38e5 Msun
ref_offset, ref_extent in MUSIC parameter	HRC-3
Snapshots stored	z=19,15,9,6,3,2,1,0.5,0

Dark matter density profile of the target halo

Radial profile in spherical shells, including the particles that could belong to subhalos.

*31 data points are used for each case for plotting.

Conclusions

- H₂-SF model: lower SFRD, lower M_{*} in low-mass halos, lower #, natural dependency on metallicity.
- Faint-end slope: very steep with $|\alpha| \ge 2$ down to $M_{uv} \approx -16$
- Increasing SFH on average (power-law/exponential); individual SFH --> bursty. duty cycle.
- Escape fractions, Ly α emission --> Good topics for AGORA
- Continue comparison btw cosmo. vs. zoom sims.

R. Thompson's talk: comparison of classic SPH vs. DISPH