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Hippelein et al. (2003)

R
ocha-Pinto et al. (2000)

Motivation

Require that cold gas 
in the disc is constantly 
replenished at rate of 

~ 1 Msun yr-1 
(Fraternali & Tomassetti, 2012)
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Motivation

- Majority of MW baryons in extra-Galactic diffuse medium (e.g. Gupta et al. 2012)

Figure credit: NASA/CXC/M.Weiss; NASA/CXC/Ohio State/A. Gupta et al.

- Extends beyond ~ 100 kpc

- T ~ 106 K

- Mass ~ 1010 Msun

- Detected via:
(i) X-ray emitting gas
(ii) quasar absorption lines

(iii) pulsar dispersion measures

(iv) Galactic baryon deficiency
(v) ram pressure stripping of 

Magellanic stream + dwarfs
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Motivation

- General models of galaxy formation require self-regulation
of gas e.g., the ‘bathtub’ model (Lilly et al. 2013, and see also Bouché et al. 2010)

- Try to answer the specifics of how this occurs with simulations

- Galaxy formation simulations in full require a great deal of
physics + huge range of scales + large amounts of analysis

- Can often learn more from smaller, dedicated simulations
- Although very important to include the relevant physics + sub-grid models
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Galaxy formation with SPHS

SPHS - Smoothed Particle Hydrodynamics 
with a higher order dissipation Switch
(Read & Hayfield 2012)

Ritchie & Thomas 2001
Price 2008
Wadsley et al. 2008
Cullen & Dehnen 2010
Hopkins 2012
Kawata et al. 2013a
“Anarchy”

Other flavours:
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Galaxy formation with SPHS

SPHS - Smoothed Particle Hydrodynamics 
with a higher order dissipation Switch
(Read & Hayfield 2012)

‘Classic’ SPH
cf. Springel (2005)

Ritchie & Thomas 2001
Price 2008
Wadsley et al. 2008
Cullen & Dehnen 2010
Hopkins 2012
Kawata et al. 2013a
“Anarchy”

Other flavours:
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- Cooling hot gaseous halo (e.g., Kaufmann et al. 2006, 07, 09) forming MW 

Galaxy formation with SPHS
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- Cooling hot gaseous halo (e.g., Kaufmann et al. 2006, 07, 09) forming MW 
- Late (smooth) accretion mode corresponding to main disk formation phase

(Abadi et al. 2003, Sommer-Larsen et al. 2003, Governato et al. 2004)   

Galaxy formation with SPHS
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rs = 40 kpc
rt = 200 kpc

Mhalo ≈ 1.9 x 1012 Msun

Mgas ≈ 1.9 x 1011 Msun

Dehnen & McLaughlin (2005)

Mastropietro et al. (2005), Kaufmann et al. (2007)

- Late (smooth) accretion mode corresponding to main disk formation phase
(Abadi et al. 2003, Sommer-Larsen et al. 2003, Governato et al. 2004)   

λ = 0.038

jgas ∝ r1.0

Peebles 1969, Bullock et al. 2001b

- Cooling hot gaseous halo (e.g., Kaufmann et al. 2006, 07, 09) forming MW 

Galaxy formation with SPHS
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Simulation

T(K)  

ρ  

ICs relaxed with adiabatic EQS to eliminate Poisson noise

- Using HOCT442 kernel (reduces particle noise)
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Simulation

100  

T(K)  

ρ  

Stars form on 
polytrope 

above a fixed density 
threshold 

ICs relaxed with adiabatic EQS to eliminate Poisson noise

- Tfloor = 100 K 

Radiative cooling  

- Ensure Jeans mass resolved 
with Mres = Nres msph

- Using HOCT442 kernel (reduces particle noise)

100 
atoms cm3
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Simulation

100  

T(K)  

ρ  

Stars form on 
polytrope 

above a fixed density 
threshold 

ICs relaxed with adiabatic EQS to eliminate Poisson noise

- Tfloor = 100 K 

Radiative cooling  

- Ensure Jeans mass resolved 
with Mres = Nres msph

- Mgas ≈ 4 x 104 Msun 

- Using HOCT442 kernel (reduces particle noise)

- Mres ≈ 5 x 106 Msun 100 
atoms cm3
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SPHS SPH

Hobbs, Read, Power & Cole 2013; http://arxiv.org/abs/1207.3814
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SPHS SPH

Hobbs, Read, Power & Cole 2013; http://arxiv.org/abs/1207.3814
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Multivalued pressures - the problem

Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2012
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Multivalued pressures - in galaxy formation simulations
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Multivalued pressures - in galaxy formation simulations
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SPHS SPH

Hobbs, Read, Power & Cole 2013; http://arxiv.org/abs/1207.3814
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Hobbs, Read, Power & Cole 2013; http://arxiv.org/abs/1207.3814
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Hobbs, Read, Power & Cole 2013; http://arxiv.org/abs/1207.3814
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0.8 Gyr

SPHS-442 | 5M

Hobbs, Read, Power & Cole 2013; http://arxiv.org/abs/1207.3814

80 kpc
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Hobbs, Read, Power & Cole 2013; http://arxiv.org/abs/1207.3814

Filaments Disc

SNe ejecta
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Hobbs, Read & Nicola, in prep.

SPHS-96 | 1M rfinal < 1.0 1.0 < rfinal < 2.0 2.0 < rfinal < 5.0 5.0 < rfinal < 10.0

80 kpc
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SNe-driven accretion flow

- Fragmenting filament similar to break-up of ‘cold-mode’
cosmological streams (Keres et al. 2009, Keres & Hernquist 2009)

- Overdensity allows for non-linear mode of collapse
- Different progenitors (SNe vs. large-scale cosmological flows)
- Different scales (50 kpc --> galaxy vs. > 200 kpc --> 40 kpc)
- Different temperatures (104 K vs 105 K)

- Form of positive feedback whereby SNe give rise to cold gas
flows that feed the disc and fuel further star formation

- Filaments can have preferentially low angular momentum
and are efficient at bringing gas from 50 kpc 1 kpc in tff
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SPHS...
...in a cosmological 

setting
hot off the 
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preliminary
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SPHS: Cosmological setting

- Parent volume:  50 Mpc/h N-body run, WMAP-7 cosmology

- Most massive halo at z = 4 identified with friends-of-friends

- Re-simulation with DM + gas using zoom-in technique (Power et al. 2003)

DM-tidal DM-LR DM-HR Stars Gas

εsoft 
(Mpc/h) 0.5 0.2 0.005 0.005 variable

mass 
(Msun/h) 3.8x1010 1.4x108 6.2x107 1.0x107 1.3x107

High-res 
glass

Low-res glass

Tidal particles
Mvir = 85.2 x 1010 Msun/h

Rvir = 0.15 Mpc/h

Halo at z = 4:
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SPHS: Cosmological setting

Sub-grid physics:
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SPHS: Cosmological setting

Sub-grid physics:

Radiative cooling down to 10K (Mashchenko et al. 2003)(i)
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SPHS: Cosmological setting

Sub-grid physics:

SNII (lifetimes w. Chabrier IMF)

SN1a (delay times as per Maoz et al. 2012)

Feedback from(iii)

Injection of thermal energy 

mass (AGORA)

metals (mFe & mO as per AGORA)

(iv)

Radiative cooling down to 10K (Mashchenko et al. 2003)(i)

Star formation thresholds:

T < 3x104 K

ρ > 5 atoms cm-3(ii)

mixing through diffusion
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SPHS: Cosmological setting

SPHS SPH
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SPHS: Cosmological setting
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SPHS: Cosmological setting

SPHS
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SPHS: ‘Early warning’ viscosity switch
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SPHS: ‘Early warning’ viscosity switch

αloc,i =

�
h2
i |∇(∇·vi)|

h2
i
|∇(∇·vi)|+hi|∇·vi|+nscs

αmax ∇ · vi < 0

0 otherwise

[Requires high order 
gradient estimator]

[i.e. going to converge]
[i.e. converging]
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SPHS: ‘Early warning’ viscosity switch

αloc,i =

�
h2
i |∇(∇·vi)|

h2
i
|∇(∇·vi)|+hi|∇·vi|+nscs

αmax ∇ · vi < 0

0 otherwise

[Requires high order 
gradient estimator]

[i.e. going to converge]
[i.e. converging]

accretion rate

viscosity
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Conclusions

- Eliminates spurious cold clumps in SPH simulations 

SPHS corrects for fundamental limitations in ‘classic’ SPH
relating to mixing of multiple phases within the fluid 
(Agertz et al. 2007)

-

Paves the way toward a new mode of disc feeding
via SNe-driven accretion flow (Hobbs et al. 2013)

-

First results from cosmo sims suggest promising behaviour

- Disks more ‘disky’? Due to structure formation differences + improved viscosity 
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Thank you
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